Search results for: filling material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6956

Search results for: filling material

6836 From “Learning to Read” to “Reading to Learn”

Authors: Lucélia Alcântara

Abstract:

Reading has been seen as a passive skill by many people for a long time. However, when one comes to study it deeply and in a such a way that the act of reading equals acquiring knowledge through living an experience that belongs to him/her, passive definitely becomes active. Material development with a focus on reading has to consider much more than reading strategies. The following questions are asked: Is the material appropriate to the students’ reality? Does it make students think and state their points of view? With that in mind a lesson has been developed to illustrate theory becoming practice. Knowledge, criticality, intercultural experience and social interaction. That is what reading is for.

Keywords: reading, culture, material development, learning

Procedia PDF Downloads 534
6835 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites

Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt

Abstract:

In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.

Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162

Procedia PDF Downloads 106
6834 Grain Boundary Detection Based on Superpixel Merges

Authors: Gaokai Liu

Abstract:

The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.

Keywords: grain boundary detection, image segmentation, material images, region merging

Procedia PDF Downloads 169
6833 Recycling of Tea: A Prepared Lithium Anode Material Research

Authors: Yea-Chyi Lin, Shinn-Dar Wu, Chien-Ping Chung

Abstract:

Tea is not only part of the daily lives of the Chinese people, but also represents an essence of their culture. A manufactured tea is prepared with other complicated steps for self-cultivation. Tea drinking promotes friendship and is etiquette in Chinese ceremony. Tea was discovered in China and introduced worldwide. Tea is generally used as herbal medicine. Paowan of tea can be used as plant composts and deodorant as well as for moisture proof-package. Tea prepared via carbon material technology resulted in the increase of its value. Carbon material technology uses graphite. With the battery anode material, tea can also become a new carbon material element. It has a fiber carbon structure that can retain the advantage of tea ontology. Therefore, this study provides a new preparation method through special sintering technology equipment with a gas counter-current system of 300°C to 400°C and 400°C to 900°C. The recovery of carbonization was up to 80% or more. This study addresses tea recycling technology and shows charred sintering method and loss from solving grinder to obtain a good fiber carbon structure.

Keywords: recycling technology, tea, carbonization, sintering technology, manufacturing

Procedia PDF Downloads 431
6832 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 498
6831 Communication Training about Depression and Suicide Prevention for Pharmacists: A Hungarian Pilot Study

Authors: Mónika Ditta Tóth, Ádám Fritz, Balázs Hankó, György Purebl

Abstract:

Communication training about depression and suicide prevention for pharmacists – A Hungarian pilot study Mónika Ditta Tóth1, Ádám Fritz2, Balázs Hankó2, György Purebl1 1: Semmelweis University, Institute of Behavioural Sciences 2: Semmelweis University, University Pharmacy Department of Pharmacy Administration Background: Suicide rates in Hungary have been one of the highest in the European Union. Depression is one of the main risk factors for suicide and recognizing and treating depression is an effective way to prevent suicidal behaviour. In their daily practice, pharmacists meet patients with high risk of mental health problems. Therefore they have a key role in the prevention of depression and suicide. Aim: The main aim of this study is to raise pharmacists’ awareness about depression and suicide to enable better recognation of verbal and non-verbal signs of these deseases. Another important objective is to reduce their stigma about depression and increase their confidence in communication with depressed and/or suicidal patients. Methods: A 3-hour communication workshop has been delivered in this pilot study about the reasons, trigger factors, verbal and non-verbal signs of depression and suicide. The training includes communication techniques which have been developed to patients needs, as well as role-playing scenarios. Depression Stigma and Morris Confidence Scales were applied before, after and 6 weeks following the training. The results of the training group are then compared with two of the following pharmacist groups: 1. written material only (N=15), 2. no material (N=15). Results: One-way ANOVA revealed significant differences in the training group regarding the level of confidence in treating and communicating with patients with depression and/or suicide following the training, and after 6 weeks (F(2, 24)= 7,135, p=,004; baseline: 20,37, after training: 30,00, follow up: 27,66). After the 3-hour workshop the personal stigma about depression decreased (baselin: 19,75 after training: 17,00, p=0,075) in the training group (N=9), whilst the perceived stigma did not change (before: 33.54, after: 33,44, p=NS). Trainees assessed the workshop as ‘useful’ and ‘gap filling’. No significant differences was found in the group of pharmacisists who got written material only. Conclusions: Despite the high rates of depression and suicide in Hungary, pharmacists do not receive lectures or seminars about mental health during their university studies. Such half-day workshops could fill this gap and give practical help to recognize and communicate with depressed and/or suicidal patients in a more effective way. This way pharmacists, as community gate-keepers, could contribute to a more effective suicide prevention program in Hungary.

Keywords: communication training, pharmacists, depression, suicide

Procedia PDF Downloads 186
6830 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 91
6829 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation

Authors: Chi Zhang, Jun Jiang

Abstract:

Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.

Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting

Procedia PDF Downloads 99
6828 A Review on Aluminium Metal Matric Composites

Authors: V. Singh, S. Singh, S. S. Garewal

Abstract:

Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies.

Keywords: aluminum metal matrix composites, applications of aluminum metal matrix composites, lighting material processing of aluminum metal matrix composites

Procedia PDF Downloads 465
6827 Circular Economy: Development of Quantitative Material Wastage Management Plan for Effective Waste Reduction in Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and GHGs emissions in the economy of different countries and cities. Many types of research had conducted and discussed the topic of waste management and waste management being a macro-level control is well developed in the building and construction industry. However, there is little research and studies on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. In this paper, we will focus on the potentialities and importance of material wastage management and review the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy

Procedia PDF Downloads 153
6826 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling

Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo

Abstract:

Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.

Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery

Procedia PDF Downloads 78
6825 Material Properties Evolution Affecting Demisability for Space Debris Mitigation

Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji

Abstract:

The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.

Keywords: demisability, emissivity, lightweight, re-entry, survivability

Procedia PDF Downloads 115
6824 Planning of Construction Material Flow Using Hybrid Simulation Modeling

Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid

Abstract:

Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.

Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation

Procedia PDF Downloads 207
6823 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 376
6822 The Environmental Effects of Amalgam Tooth Fillings

Authors: Abdulsalam I. Rafida, Abdulhmid M. Alkout, Abdultif M. Alroba

Abstract:

This study investigates the heavy metal content in the saliva of persons with amalgam tooth fillings. For this purpose, samples of saliva have been collected based on two factors i.e. the number of amalgam fillings in the mouth (one, two or three fillings), and the time factor i.e. the time since the fillings have been in place (less than a year and more than a year). Samples of saliva have also been collected from persons with no amalgam tooth fillings for control. The samples that have been collected so far, have been examined for the basic heavy metal content featuring amalgam, which include mercury (Hg) and silver (Ag). However, all the above mentioned elements have been detected in the samples of saliva of the persons with amalgam tooth fillings, though with varying amounts depending on the number of fillings. Thus, for persons with only one filling the average quantities were found to be 0.00061 ppm and 0.033 ppm for Hg and Ag respectively. On the other hand for persons with two fillings the average quantities were found to be 0.0012 ppm and 0.029 ppm for each of the two elements respectively. However, in order to understand the chemical reactions associated with amalgam tooth fillings in the mouth, the material have been treated outside the mouth using some nutrient media. Those media included drinking water, fizzy drinks and hot tea. All three media have been found to contain the three elements after amalgam treatment. Yet, the fizzy drink medium was found to contain the highest levels of those elements.

Keywords: amalgam, mercury, silver, fizzy drinks, media

Procedia PDF Downloads 197
6821 Some Basic Problems for the Elastic Material with Voids in the Case of Approximation N=1 of Vekua's Theory

Authors: Bakur Gulua

Abstract:

In this work, we consider some boundary value problems for the plate. The plate is the elastic material with voids. The state of plate equilibrium is described by the system of differential equations that is derived from three-dimensional equations of equilibrium of an elastic material with voids (Cowin-Nunziato model) by Vekua's reduction method. Its general solution is represented by means of analytic functions of a complex variable and solutions of Helmholtz equations. The problem is solved analytically by the method of the theory of functions of a complex variable.

Keywords: the elastic material with voids, boundary value problems, Vekua's reduction method, a complex variable

Procedia PDF Downloads 127
6820 Research on the Two-Way Sound Absorption Performance of Multilayer Material

Authors: Yang Song, Xiaojun Qiu

Abstract:

Multilayer materials are applied to much acoustics area. Multilayer porous materials are dominant in room absorber. Multilayer viscoelastic materials are the basic parts in underwater absorption coating. In most cases, the one-way sound absorption performance of multilayer material is concentrated according to the sound source site. But the two-way sound absorption performance is also necessary to be known in some special cases which sound is produced in both sides of the material and the both sides especially might contact with different media. In this article, this kind of case was research. The multilayer material was composed of viscoelastic layer and steel plate and the porous layer. The two sides of multilayer material contact with water and air, respectively. A theory model was given to describe the sound propagation and impedance in multilayer absorption material. The two-way sound absorption properties of several multilayer materials were calculated whose two sides all contacted with different media. The calculated results showed that the difference of two-way sound absorption coefficients is obvious. The frequency, the relation of layers thickness and parameters of multilayer materials all have an influence on the two-way sound absorption coefficients. But the degrees of influence are varied. All these simulation results were analyzed in the article. It was obtained that two-way sound absorption at different frequencies can be promoted by optimizing the configuration parameters. This work will improve the performance of underwater sound absorption coating which can absorb incident sound from the water and reduce the noise radiation from inside space.

Keywords: different media, multilayer material, sound absorption coating, two-way sound absorption

Procedia PDF Downloads 542
6819 A Guide for Using Viscoelasticity in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS.

Keywords: ANSYS, generalized Maxwell model, finite element method, Prony series, viscoelasticity, viscoelastic material curve fitting

Procedia PDF Downloads 603
6818 Towards Intercultural Competence in EFL Textbook: the Case of ‘New Prospects’

Authors: Kamilia Mebarki

Abstract:

The promotion of intercultural competence plays an important role in foreign language education. The outcome of intercultural educationalists‟ studies was the adoption of intercultural language learning and a modified version of the Communicative Competence that encompasses an intercultural component enabling language learners to communicate successfully interculturally. Intercultural Competencehas an even more central role in teaching English as a foreign language (EFL) since efforts are critical to preparing learners for intercultural communisation in our global world. In these efforts, EFL learning materials are a crucial stimulus for developing learners’ intercultural competence. There has been a continuous interest in the analysis of EFL textbooks by researcher all over the world. One specific area that has received prominent attention in recent years is a focus on how the cultural content of EFL materials promote intercultural competence. In the Algerian context, research on the locally produced EFL textbooks tend to focus on investigating the linguistic and communicative competence. The cultural content of the materials has not yet been systematically researched. Therefore, this study contributes to filling this gap by evaluating the locally published EFL textbook ‘New Prospects’ used at the high school level as well as investigating teachers’ views and attitudes on the cultural content of ‘New Prospects’ alongside two others locally produced EFL textbooks ‘Getting Through’ and ‘At the Crossroad’ used at high school level. To estimate the textbook’s potential of developing intercultural competence, mixed methods, a combination of quantitative and qualitative data collection, was used in the material evaluation analysed via content analysis and in the survey questionnaire and interview with teachers.Data collection and analysis were supported by the frameworks developed by the researcher for analysing the textbook, questionnaire, and interview. Indeed, based on the literature, three frameworks/ models are developed in this study to analyse, on one hand, the cultural contexts and themes discussed in the material that play an important role in fostering learners’ intercultural awareness. On the other hand, to evaluate the promotion of developing intercultural competence.

Keywords: intercultural communication, intercultural communicative competence, intercultural competence, EFL materials

Procedia PDF Downloads 97
6817 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: Girts Bumanis, Diana Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: alkaline material, buffer capacity, biogas production, bioreactors

Procedia PDF Downloads 242
6816 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 201
6815 Reservoir Properties Effect on Estimating Initial Gas in Place Using Flowing Material Balance Method

Authors: Yousef S. Kh. S. Hashem

Abstract:

Accurate estimation of initial gas in place (IGIP) plays an important factor in the decision to develop a gas field. One of the methods that are available in the industry to estimate the IGIP is material balance. This method required that the well has to be shut-in while pressure is measured as it builds to average reservoir pressure. Since gas demand is high and shut-in well surveys are very expensive, flowing gas material balance (FGMB) is sometimes used instead of material balance. This work investigated the effect of reservoir properties (pressure, permeability, and reservoir size) on the estimation of IGIP when using FGMB. A gas reservoir simulator that accounts for friction loss, wellbore storage, and the non-Darcy effect was used to simulate 165 different possible causes (3 pressures, 5 reservoir sizes, and 11 permeabilities). Both tubing pressure and bottom-hole pressure were analyzed using FGMB. The results showed that the FGMB method is very sensitive for tied reservoirs (k < 10). Also, it showed which method is best to be used for different reservoir properties. This study can be used as a guideline for the application of the FGMB method.

Keywords: flowing material balance, gas reservoir, reserves, gas simulator

Procedia PDF Downloads 155
6814 Developing Ergonomic Prototype Testing Method for Manual Material Handling

Authors: Yusuf Nugroho Doyo Yekti, Budi Praptono, Fransiskus Tatas Dwi Atmaji

Abstract:

There is no ergonomic prototype testing method for manual material handling yet. This study has been carried out to demonstrate the comprehensive ergonomic assessment. The ergonomic assessment is important to improve safety of products and to ensure usefulness of the product. The prototype testing is conducted by involving few intended users and ordinary people. In this study, there are four operators who participated in several tests. Also, there are 30 ordinary people who joined the usability test. All the ordinary people never do material handling activity nor use material handling device. The methods used in the tests are Rapid Entire Body Assessment (REBA), Recommended Weight Limit (RWL), and Cardiovascular Load (%CVL) other than usability test and questionnaire. The proposed testing methods cover comprehensive ergonomic aspects, i.e. physical aspect, mental aspect, emotional aspects of human.

Keywords: ergonomic, manual material handling, prototype testing, assessment

Procedia PDF Downloads 517
6813 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials

Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic

Abstract:

In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.

Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method

Procedia PDF Downloads 78
6812 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 200
6811 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 44
6810 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy

Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko

Abstract:

A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.

Keywords: diffusion brazing, microstructure, superalloy, tensile strength

Procedia PDF Downloads 364
6809 3D Scanning Documentation and X-Ray Radiography Examination for Ancient Egyptian Canopic Jar

Authors: Abdelrahman Mohamed Abdelrahman

Abstract:

Canopic jars are one of the vessels of funerary nature used by the ancient Egyptian in mummification process that were used to save the viscera of the mummified body after being extracted from the body and treated. Canopic jars are made of several types of materials like Limestone, Alabaster, and Pottery. The studied canopic jar dates back to Late period, located in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar carved from limestone with carved hieroglyphic inscriptions, and it filled and closed by mortar from inside. Some aspects of damage appeared in the jar, such as dust, dirts, classification, wide crack, weakness of limestone. In this study, we used documentation and investigation modern techniques to document and examine the jar. 3D scanning and X-ray Radiography imaging used in applied study. X-ray imaging showed that the mortar was placed at a time when the jar contained probably viscera where the mortar appeared that not reach up to the base of the inner jar. Through the three-dimensional photography, the jar was documented, and we have 3D model of the jar, and now we have the ability through the computer to see any part of the jar in all its details. After that, conservation procedures have been applied with high accuracy to conserve the jar, including mechanical, wet, and chemical cleaning, filling wide crack in the body of the jar using mortar consisting of calcium carbonate powder mixing with primal E330 S, and consolidation, so the limestone became strong after using paraloid B72 2% concentrate as a consolidate material.

Keywords: vessel, limestone, canopic jar, mortar, 3D scanning, X-ray radiography

Procedia PDF Downloads 77
6808 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 93
6807 The Differences on the Surface Roughness of Glass Ionomer Cement as the Results of Brushing with Whitening and Conventional Toothpaste

Authors: Aulina R. Rahmi, Farid Yuristiawan, Annisa Ibifadillah, Ummu H. Amri, Hidayati Gunawan

Abstract:

Glass ionomer cement is one of the filling material that often used on the field of dentistry because it is relatively less expensive and mostly available. Restoration materials could undergo changes in their clinical properties such as changes in roughness of the restoration`s surface. An increase of surface roughness accelerates bacterial colonization and plaque maturation. In the oral cavity, GIC was exposed to various substances, such as toothpaste, an oral care product used during toothbrushing. One of the popular toothpaste is whitening toothpaste. Abrasive and chemical agents such as hydrogen peroxide in whitening toothpaste could increase the surface roughness of restorative materials. Objective: To determine the differences on the surface roughness of glass ionomer cement that was brushed with whitening and conventional toothpaste. Method: This study was done using experimental laboratory method with pre and post test design. There were 36 samples which were divided into 2 groups. The first group was brushed with whitening toothpaste and the second group was brushed with conventional toothpaste, each for 2 minutes. Surface roughness value of the specimens was measured by using Roughness Tester test. Result: The data was analyzed by using independent t-test and the result of this study showed there was a significant difference between the surface of glass ionomer cement which was brushed with whitening and conventional toothpaste (p=0,000). Conclusion: Glass ionomer cement that was brushed with whitening toothpaste produced more roughness than conventional toothpaste.

Keywords: glass ionomer cement, surface roughness, toothpaste, roughness tester

Procedia PDF Downloads 287