Search results for: due dates prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2447

Search results for: due dates prediction

2327 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
2326 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 419
2325 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
2324 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
2323 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 231
2322 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
2321 The Cardiac Diagnostic Prediction Applied to a Designed Holter

Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez

Abstract:

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Keywords: attractor , cardiac, entropy, holter, mathematical , prediction

Procedia PDF Downloads 169
2320 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
2319 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
2318 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
2317 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction

Procedia PDF Downloads 415
2316 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
2315 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e., meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: deadline missing, historical data, mobile robots, prediction mechanism

Procedia PDF Downloads 401
2314 Useful Lifetime Prediction of Rail Pads for High Speed Trains

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design

Procedia PDF Downloads 326
2313 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt

Authors: H. A. Mansour

Abstract:

The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.

Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation

Procedia PDF Downloads 297
2312 Effect of Different Media and Planting Time on the Cuttings of Cherry (Prunus Avium L.) Rootstock Colt Under the Agro Climatic Conditions of Temprate Region

Authors: Sajjad Ali Khan Sajjad Ali Khan, Gohar Ayub, Khalil Ur Rahman, Muhammad Sajid, Mumtaz Farooq, Mohammad Irshad, Haider Ali

Abstract:

A trail was carried out to know the effect of different soil media and planting time on the cuttings of cherry (Prunus avium L.) rootstock Colt at Agriculture Research Institute (ARI) Mingora swat, during winter 2011. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangement and was replicated three times. Soil media (Silt, Garden soil and Silt+Garden soil+FYM) were assigned to main plots whereas, planting Dates (1st Jan, 11th Jan, 21st Jan, 1st Feb, 11th Feb, 21st Feb and 2nd March) subjected to sub plots. The data recorded on sprouting percentage, shoot diameter cutting-1, number of leaves cutting-1, rootstock height (cm), survival percentage, number of roots, root length (cm), root volume (cm3) and root weight (gm) were significantly affected by different soil media. Maximum sprouting percentage (100%), shoot diameter (1.72 mm), number of leaves cutting-1 (76.74), rootstock height (104.36 cm), survival percentage (41.67%), number of roots (76.35), root length (11.28 cm), root volume (4.43 cm3) and root weight (4.64 gm) were recorded in media M3 (Garden soil+silt+FYM). A significant response to various planting dates were observed for most of vegetative and rooting attributes of cherry rootstock Colt. 1st January plantation showed maximum sprouting percentage (100%), shoot diameter (1.99 mm), number of leaves (81.46), rootstock height (126.24 cm), survival percentage (58.12%), whereas 11th January plantation showed more number of roots (94.43), root length (10.60 cm), root volume (3.68 cm3) and root weight (3.71 gm). Based on the results from the experimental work, it is recommended that cherry cuttings should be planted in early January in soil media (Silt+Garden soil+ FYM) for better growth and development under the agro climatic conditions of temperate region.

Keywords: soil media, cherry rootstock, planting dates, growth parameters

Procedia PDF Downloads 98
2311 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 145
2310 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 358
2309 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
2308 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 153
2307 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 326
2306 Fast Authentication Using User Path Prediction in Wireless Broadband Networks

Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman

Abstract:

Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.

Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern

Procedia PDF Downloads 405
2305 Estimation of Sediment Transport into a Reservoir Dam

Authors: Kiyoumars Roushangar, Saeid Sadaghian

Abstract:

Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.

Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction

Procedia PDF Downloads 496
2304 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: process planning, weighted scheduling, weighted due-date assignment, simulated annealing, evolutionary strategies, hybrid searches

Procedia PDF Downloads 462
2303 The Effect of Dry Matter Production Growth Rate, Temperature Rapeseed

Authors: Vadood Mobini, Mansoreh Agazadeh Shahrivar, Parvin Hashemi Gelenjkhanlo, Hassan Vazifah

Abstract:

Seed number is a function of dry matter accumulation, crop growth rate (CGR), photothermal quotient (PTQ) and temperature during a critical developmental period, which is around flowering in canola (Brassica napus L.). The objective of this experiment was to determine factors such as dry matter, CGR, temperature, and PTQ around flowering which affect seed number. The experiment was conducted at Agricultural Research Station of Gonbad, Iran, between 2005 and 2007. Two cultivars of canola (Hyola401 and RGS003), as subplots were grown at 5 sowing dates as main plots, spaced approximately 30 days apart, to obtain different environmental conditions during flowering. The experiment was arranged in two conditions, i.e., supplemental irrigation and rainfed. Seed number per unit area was a key factor for increasing seed yield. Late sowing dates made the critical period of flowering coincide with high temperatures, decreased days to the flowering, seed number per unit area and seed yield. Seed number was driven by the availability of carbohydrates around flowering. Seed number per unit area was maximized for the cultivars when exposed to the highest PTQ, and to the lowest temperature between the beginning of flowering to that of seed filling. The relationship of seed number with aboveground dry matter, CGR, temperature, and PTQ around flowering, over different environmental conditions, showed these variables were generally applicable to seed number determination.

Keywords: flowering, cultivar, seed filling, environmental conditions, seed yield

Procedia PDF Downloads 458
2302 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach

Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares

Abstract:

Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.

Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network

Procedia PDF Downloads 205
2301 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 448
2300 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 114
2299 Contrasting The Water Consumption Estimation Methods

Authors: Etienne Alain Feukeu, L. W. Snyman

Abstract:

Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.

Keywords: water scarcity, water estimation, water prediction, water forecast.

Procedia PDF Downloads 201
2298 Prediction on the Pursuance of Separation of Catalonia from Spain

Authors: Francis Mark A. Fernandez, Chelca Ubay, Armithan Suguitan

Abstract:

Regions or provinces in a definite state certainly contribute to the economy of their mainland. These regions or provinces are the ones supplying the mainland with different resources and assets. Thus, with a certain region separating from the mainland would indeed impinge the heart of an entire state to develop and expand. With these, the researchers decided to study on the effects of the separation of one’s region to its mainland and the consequences that will take place if the mainland would rule out the region to separate from them. The researchers wrote this paper to present the causes of the separation of Catalonia from Spain and the prediction regarding the pursuance of this region to revolt from its mainland, Spain. In conducting this research, the researchers utilized two analyses, namely: qualitative and quantitative. In qualitative, numerous of information regarding the existing experiences of the citizens of Catalonia were gathered by the authors to give certainty to the prediction of the researchers. Besides this undertaking, the researchers will also gather needed information and figures through books, journals and the published news and reports. In addition, to further support this prediction under qualitative analysis, the researchers intended to operate the Phenomenological research in which the examiners will exemplify the lived experiences of each citizen in Catalonia. Moreover, the researchers will utilize one of the types of Phenomenological research which is hermeneutical phenomenology by Van Manen. In quantitative analysis, the researchers utilized the regression analysis in which it will ascertain the causality in an underlying theory in understanding the relationship of the variables. The researchers assigned and identified different variables, wherein the dependent variable or the y which represents the prediction of the researchers, the independent variable however or the x represents the arising problems that grounds the partition of the region, the summation of the independent variable or the ∑x represents the sum of the problem and finally the summation of the dependent variable or the ∑y is the result of the prediction. With these variables, using the regression analysis, the researchers will be able to show the connections and how a single variable could affect the other variables. From these approaches, the prediction of the researchers will be specified. This research could help different states dealing with this kind of problem. It will further help certain states undergoing this problem by analyzing the causes of these insurgencies and the effects on it if it will obstruct its region to consign their full-pledge autonomy.

Keywords: autonomy, liberty, prediction, separation

Procedia PDF Downloads 250