Search results for: deep brain stimulation (DBS)
3413 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations
Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi
Abstract:
Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation
Procedia PDF Downloads 1803412 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue
Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian
Abstract:
Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.Keywords: mobile phone, radio frequency waves, brain tissue, temperature
Procedia PDF Downloads 2013411 Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson's Disease
Authors: Ana Munguia, Gerardo Ortiz, Guadalupe Gonzalez, Fiacro Jimenez
Abstract:
Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives.Keywords: Parkinson's disease, rTMS, cognitive, treatment
Procedia PDF Downloads 1453410 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation
Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj
Abstract:
As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH
Procedia PDF Downloads 1543409 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 3883408 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 1473407 Gut-Microbiota-Brain-Axis, Leaky Gut, Leaky Brain: Pathophysiology of Second Brain Aging and Alzheimer’s Disease- A Neuroscientific Riddle
Authors: Bilal Ahmad
Abstract:
Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses. However, how Gut-microbiota plays a role in the pathogenesis of AD is not well elucidated. The purpose of this literature review is to summarize and understand the current findings that may elucidate the gut microbiota's role in the development of AD. Methods: A literature review of all the relevant papers known to the author was conducted. Relevant articles, abstracts and research papers were collected from well-accepted web sources like PubMed, PMC, and Google Scholar. Results: Recent studies have shown that Gut-microbiota has an important role in the progression of AD via Gut-Microbiota-Brain Axis. The onset of AD supports the ‘Hygiene Hypothesis’, which shows that AD might begin in the Gut, causing dysbiosis, which interferes with the intestinal barrier by releasing pro-inflammatory cytokines and making its way up to the brain via the blood-brain barrier (BBB). Molecular mechanisms lipopolysaccharides and serotonin kynurenine (tryptophan) pathways have a direct association with inflammation, the immune system, neurodegeneration, and AD. Conclusion: The studies helped to analyze the molecular basis of AD, other neurological conditions like depression, autism, and Parkinson's disease and how they are linked to Gut-microbiota. Further, studies to explore the therapeutic effects of probiotics in AD and cognitive enhancement should be warranted to provide significant clinical and practical value.Keywords: gut-microbiota, Alzheimer’s disease, second brain aging, lipopolysaccharides, short-chain fatty acids
Procedia PDF Downloads 433406 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model
Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin
Abstract:
In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect
Procedia PDF Downloads 3203405 The Effects of High-frequency rTMS Targeting the Mirror Neurons on Improving Social Awareness in ASD, the Preliminary Analysis of a Pilot Study
Authors: Mitra Assadi, Md. Faan
Abstract:
Background: Autism Spectrum Disorder (ASD) in a common neurodevelopmental disorder with limited pharmacological interventions. Transcranial Magnetic Stimulation (rTMS) has produced promising results in ASD, although there is no consensus regarding optimal targets or stimulation paradigms. A prevailing theory in ASD attributes the core deficits to dysfunction of the mirror neurons located in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Methods: Thus far, 11 subjects with ASD, 10 boys and 1 girl with the mean age of 13.36 years have completed the study by receiving 10 session of high frequency rTMS to the IPL. The subjects were randomized to receive stimulation on the left or right IPL and sham stimulation to the opposite side. The outcome measures included the Social Responsiveness Scale – Second Edition (SRS-2) and Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency task. Results: None of the 11 subjects experienced any adverse effects. The rTMS did not produce any improvement in verbal fluency, nor there was any statistically significant difference between the right versus left sided stimulation. Analysis of social awareness on SRS-2 (SRS-AWR) indicated a close to significant effect of the treatment with a small to medium effect size. After removing a single subject with Level 3 ASD, we demonstrated a close to significant improvement on SRS-AWR with a large effect size. The analysis of the data 3-month post TMS demonstrated return of the SRS-AWR values to baseline. Conclusion: This preliminary analysis of the 11 subjects who have completed our study thus far shows a favorable response to high frequency rTMS stimulation of the mirror neurons/IPL on social awareness. While the decay of the response noted during the 3-month follow-up may be considered a limitation of rTMS, the presence of the improvement, especially the effect size despite the small sample size, is indicative of the efficacy of this technique.Keywords: rTMS, autism, scoial cognition, mirror neurons
Procedia PDF Downloads 693404 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 2313403 Memory Types in Hemodialysis (HD) Patients; A Study Based on Hemodialysis Duration, Zahedan: South East of Iran
Authors: Behnoush Sabayan, Ali Alidadi, Saeid Ebarhimi, N. M. Bakhshani
Abstract:
Hemodialysis (HD) patients are at a high risk of atherosclerotic and vascular disease; also little information is available for the HD impact on brain structure of these patients. We studied the brain abnormalities in HD patients. The aim of this study was to investigate the effect of long term HD on brain structure of HD patients. Non-contrast MRI was used to evaluate imaging findings. Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% were female. According to study, HD patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had small vessel ischemia than the HD patients who underwent HD for a shorter term, which the median time was 3 to 5 months. Most of the small vessel ischemia was located in pre-ventricular, subcortical and white matter (1.33± .471, 1.23± .420 and 1.39±.490). However, the other brain damages like: central pons abnormality, global brain atrophy, thinning of corpus callosum and frontal lobe atrophy were found (P<0.01). The present study demonstrated that HD patients who were under HD for a longer time had small vessel ischemia and we conclude that this small vessel ischemia might be a causative mechanism of brain atrophy in chronic hemodialysis patients. However, additional researches are needed in this area.Keywords: Hemodialysis Patients, Duration of Hemodialysis, MRI, Zahedan
Procedia PDF Downloads 2133402 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 363401 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1773400 Effect of Rhythmic Auditory Stimulation on Gait in Patients with Stroke
Authors: Mohamed Ahmed Fouad
Abstract:
Background: Stroke is the most leading cause to functional disability and gait problems. Objectives: The purpose of this study was to determine the effect of rhythmic auditory stimulation combined with treadmill training on selected gait kinematics in stroke patients. Methods: Thirty male stroke patients participated in this study. The patients were assigned randomly into two equal groups, (study and control). Patients in the study group received treadmill training combined with rhythmic auditory stimulation in addition to selected physical therapy program for hemiparetic patients. Patients in the control group received treadmill training in addition to the same selected physical therapy program including strengthening, stretching, weight bearing, balance exercises and gait training. Biodex gait trainer 2 TM was used to assess selected gait kinematics (step length, step cycle, walking speed, time on each foot and ambulation index) before and after six weeks training period (end of treatment) for both groups. Results: There was a statistically significant increase in walking speed, step cycle, step length, percent of the time on each foot and ambulation index in both groups post-treatment. The improvement in gait parameters post-treatment was significantly higher in the study group compared to the control. Conclusion: Rhythmic auditory stimulation combined with treadmill training is effective in improving selected gait kinematics in stroke patients when added to the selected physical therapy program.Keywords: stroke, rhythmic auditory stimulation, treadmill training, gait kinematics
Procedia PDF Downloads 2453399 Market-Driven Process of Brain Circulation in Knowledge Services Industry in Sri Lanka
Authors: Panagodage Janaka Sampath Fernando
Abstract:
Brain circulation has become a buzzword in the skilled migration literature. However, promoting brain circulation; returning of skilled migrants is challenging. Success stories in Asia, for instances, Taiwan, and China, are results of rigorous policy interventions of the respective governments. Nonetheless, the same policy mix has failed in other countries making it skeptical to attribute the success of brain circulation to the policy interventions per se. The paper seeks to answer whether the success of brain circulation within the Knowledge Services Industry (KSI) in Sri Lanka is a policy driven or a market driven process. Mixed method approach, which is a combination of case study and survey methods, was employed. Qualitative data derived from ten case studies of returned entrepreneurs whereas quantitative data generated from a self-administered survey of 205 returned skilled migrants (returned skilled employees and entrepreneurs) within KSI. The pull factors have driven the current flow of brain circulation within KSI but to a lesser extent, push factors also have influenced. The founding stone of the industry has been laid by a group of returned entrepreneurs, and the subsequent growth of the industry has attracted returning skilled employees. Sri Lankan government has not actively implemented the reverse brain drain model, however, has played a passive role by creating a peaceful and healthy environment for the industry. Therefore, in contrast to the other stories, brain circulation within KSI has emerged as a market driven process with minimal government interventions. Entrepreneurs play the main role in a market-driven process of brain circulation, and it is free from the inherent limitations of the reverse brain drain model such as discriminating non-migrants and generating a sudden flow of low-skilled migrants. Thus, to experience a successful brain circulation, developing countries should promote returned entrepreneurs by creating opportunities in knowledge-based industries.Keywords: brain circulation, knowledge services industry, return migration, Sri Lanka
Procedia PDF Downloads 2793398 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients
Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger
Abstract:
Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke
Procedia PDF Downloads 923397 Effect of Electric Stimulation on Characteristic Changes in Hot-Boned Beef Brisket of Different Potential Tenderness
Authors: Orose Rugchati, Kanita Thanacharoenchanaphas, Sarawut Wattanawongpitak
Abstract:
In this study, the effect of electric stimulation on the quality of hot-boned beef brisket muscles was evaluated, including the tenderness, pH, temperature change, and colorant. Muscles were obtained from steers in the local slaughter house. (3 steers for each muscle), removed from the carcasses 4-hour postmortem and variable time to treated with direct current electric 1 and 5 minutes, respectively. Six different electric intensities (direct current voltage of 50, 70 and 90 Volt, pulse with 10, 20 and 40 ms) plus a control were applied to each muscle to determine the optimum treatment conditions. Hot-boned beef brisket was found to get tender with increasing treatment direct current voltage and reduction in the shear force with pulsed with electric treatment. But in a long time to treated with electric current get fading in red color and temperature increase whereas pH quite different compared to non-treated control samples.Keywords: electric stimulation, characteristic changes, hot-boned beef brisket, potential tenderness
Procedia PDF Downloads 3413396 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma
Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu
Abstract:
In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles
Procedia PDF Downloads 1943395 Base Deficit Profiling in Patients with Isolated Blunt Traumatic Brain Injury – Correlation with Severity and Outcomes
Authors: Shahan Waheed, Muhammad Waqas, Asher Feroz
Abstract:
Objectives: To determine the utility of base deficit in traumatic brain injury in assessing the severity and to correlate with the conventional computed tomography scales in grading the severity of head injury. Methodology: Observational cross-sectional study conducted in a tertiary care facility from 1st January 2010 to 31st December 2012. All patients with isolated traumatic brain injury presenting within 24 hours of the injury to the emergency department were included in the study. Initial Glasgow Coma Scale and base deficit values were taken at presentation, the patients were followed during their hospital stay and CT scan brain findings were recorded and graded as per the Rotterdam scale, the findings were cross-checked by a radiologist, Glasgow Outcome Scale was taken on last follow up. Outcomes were dichotomized into favorable and unfavorable outcomes. Continuous variables with normal and non-normal distributions are reported as mean ± SD. Categorical variables are presented as frequencies and percentages. Relationship of the base deficit with GCS, GOS, CT scan brain and length of stay was calculated using Spearman`s correlation. Results: 154 patients were enrolled in the study. Mean age of the patients were 30 years and 137 were males. The severity of brain injuries as per the GCS was 34 moderate and 109 severe respectively. 34 percent of the total has an unfavorable outcome with a mean of 18±14. The correlation was significant at the 0.01 level with GCS on presentation and the base deficit 0.004. The correlation was not significant between the Rotterdam CT scan brain findings, length of stay and the base deficit. Conclusion: The base deficit was found to be a good predictor of severity of brain injury. There was no association of the severity of injuries on the CT scan brain as per the Rotterdam scale and the base deficit. Further studies with large sample size are needed to further evaluate the associations.Keywords: base deficit, traumatic brain injury, Rotterdam, GCS
Procedia PDF Downloads 4433394 Deep Learning for Recommender System: Principles, Methods and Evaluation
Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui
Abstract:
Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.Keywords: big data, decision making, deep learning, recommender system
Procedia PDF Downloads 4783393 Comparison of Stereotactic Craniotomy for Brain Metastasis, as Compared to Stereotactic Radiosurgery
Authors: Mostafa El Khashab
Abstract:
Our experience with 50 patients with metastatic tumors located in different locations of the brain by a stereotactic-guided craniotomy and total microsurgical resection. Patients ranged in age from 36 to 73 years. There were 28 women and 22 men. Thirty-four patients presented with hemiparesis and 6 with aphasia and the remaining presented with psychological manifestations and memory issues. Gross total resection was accomplished in all cases, with postoperative imaging confirmation of complete removal. Forty patients were subjected to whole brain irradiation. One patient developed a stroke postoperatively and another one had a flap infection. 4 patients developed different postoperative but unrelated morbidities, including pneumonia and DVT. No mortality was encountered. We believe that with the assistance of stereotactic localization, metastases in vital regions of the brain can be removed with very low neurologic morbidity and that, in comparison to other modalities, they fare better regarding their long-term outcome.Keywords: stereotactic, craniotomy, radiosurgery, patient
Procedia PDF Downloads 913392 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: deep excavation, ground anchors, interaction soil-structure, struts
Procedia PDF Downloads 4143391 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1893390 The Effect of Trans-Cranial Direct Current Stimulation (tDCS) on Cognitive Flexibility and Social Decision-Making in Football Players
Authors: Erfan Izadpanah
Abstract:
The present study was conducted to investigate the effect of the Trans-Cranial Direct Current Stimulation (tDCS) on cognitive flexibility and social decision-making in skilled, semi-skilled and novice football players. The present quasi-experimental pretest-posttest study was conducted on 60 randomly-selected subjects divided into trial and placebo groups (n=30 per group). The trial group received three 20-minute sessions of anodic stimulation at the intensity of 2 mA. The placebo group also received three sessions of sham anodic stimulation. Data were collected using the Wisconsin, Grant and Berg Card-Sorting Test (1948) and the ultimatum game and were then analyzed using the ANCOVA. The results showed significant differences between the skilled, semi-skilled and novice football players in the trial and placebo groups in terms of cognitive flexibility and social decision-making (P<0.01). TDCS appears to be able to improve cognitive flexibility and consequently social decision-making in football players and is recommended to sport psychologists and coaches as a useful intervention to increase cognitive flexibility and improve social decision-making in players.Keywords: TDCS, cognitive flexibility, social decision-making, skilled, semi-skilled and novice football players
Procedia PDF Downloads 1423389 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2113388 Interbrain Synchronization and Multilayer Hyper brain Networks when Playing Guitar in Quartet
Authors: Viktor Müller, Ulman Lindenberger
Abstract:
Neurophysiological evidence suggests that the physiological states of the system are characterized by specific network structures and network topology dynamics, demonstrating a robust interplay between network topology and function. It is also evident that interpersonal action coordination or social interaction (e.g., playing music in duets or groups) requires strong intra- and interbrain synchronization resulting in a specific hyper brain network activity across two or more brains to support such coordination or interaction. Such complex hyper brain networks can be described as multiplex or multilayer networks that have a specific multidimensional or multilayer network organization characteristic for superordinate systems and their constituents. The aim of the study was to describe multilayer hyper brain networks and synchronization patterns of guitarists playing guitar in a quartet by using electroencephalography (EEG) hyper scanning (simultaneous EEG recording from multiple brains) and following time-frequency decomposition and multilayer network construction, where within-frequency coupling (WFC) represents communication within different layers, and cross-frequency coupling (CFC) depicts communication between these layers. Results indicate that communication or coupling dynamics, both within and between the layers across the brains of the guitarists, play an essential role in action coordination and are particularly enhanced during periods of high demands on musical coordination. Moreover, multilayer hyper brain network topology and dynamical structure of guitar sounds showed specific guitar-guitar, brain-brain, and guitar-brain causal associations, indicating multilevel dynamics with upward and downward causation, contributing to the superordinate system dynamics and hyper brain functioning. It is concluded that the neuronal dynamics during interpersonal interaction are brain-wide and frequency-specific with the fine-tuned balance between WFC and CFC and can best be described in terms of multilayer multi-brain networks with specific network topology and connectivity strengths. Further sophisticated research is needed to deepen our understanding of these highly interesting and complex phenomena.Keywords: EEG hyper scanning, intra- and interbrain coupling, multilayer hyper brain networks, social interaction, within- and cross-frequency coupling
Procedia PDF Downloads 723387 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds
Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui
Abstract:
The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.
Procedia PDF Downloads 363386 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4433385 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 323384 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 111