Search results for: auto tuning
533 Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure
Authors: Juan Xia, Jiaxu Yan, Ze Xiang Shen
Abstract:
The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping.Keywords: 2D TMDs, electronic property, high pressure, first-principles calculations
Procedia PDF Downloads 231532 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 62531 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 438530 Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure
Authors: M'Hamed Boulakroune, Mouloud Challal, Hassiba Louazene, Saida Fentiz
Abstract:
This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.Keywords: defected ground structure, diode varactor, microstrip bandpass filter, multiple-mode resonator
Procedia PDF Downloads 311529 Intergenerational Influences on Automobile Brand Preferences in Pakistan
Authors: Amena Sibghatullah
Abstract:
The purpose of this study was to examine the existence of Inter-generational Influence (IGI) between two successive generations in the selection of automobile brands. IGI was examined between mother-daughter dyads and father-son dyads. A total sample of 320 respondents (80 fathers and their 80 sons, 80 mothers, and their 80 daughters) from the upper-middle class was selected. Three important findings from this study are; (a) the difference in proportion of agreements Brand-In-Use versus Brand-In-Mind appeared to be statistically significant in the Automobile product category. Thus agreements Brand-In-Use situation between parent and child has more agreements than Brand-In-Mind situation; (b) the difference in proportions between women and men (women means mother-daughter dyad agreement, and men means father-son dyad agreement) is statistically significant in automobile brand preferences. This means that mother-daughter dyad brand preferences, both brand-in-mind and brand-in-use are more significant than that of a father-son dyad, and (c) dominance of the top three brands has been exhibited in automobiles both Brand-In-Use and Brand-In-Mind. These three brands hold more than 57% of auto brand preferences. This means that the three brands occupy distinct and strong positions in the minds of consumers. These results reflect that there is significant evidence of IGI presence between parent and adult child. Marketers of auto brands need to understand this sort of influence on their target consumers.Keywords: autombile brands, branding, intergenerational influence, preferences
Procedia PDF Downloads 144528 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 75527 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4
Procedia PDF Downloads 383526 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels
Authors: Shin Woo Kim, Eui Ju Lee
Abstract:
The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)
Procedia PDF Downloads 212525 Patented Free-Space Optical System for Auto Aligned Optical Beam Allowing to Compensate Mechanical Misalignments
Authors: Aurelien Boutin
Abstract:
In optical systems such as Variable Optical Delay Lines, where a collimated beam has to go back and forth, corner cubes are used in order to keep the reflected beam parallel to the incoming beam. However, the reflected beam can be laterally shifted, which will lead to losses. In this paper, we report on a patented optical design that allows keeping the reflected beam with the exact same position and direction whatever the displacement of the corner cube leading to zero losses. After explaining how the optical design works and theoretically allows to compensate for any defects in the translation of the corner cube, we will present the results of experimental comparisons between a standard layout (i.e., only corner cubes) and our optical layout. To compare both optical layouts, we used a fiber-to-fiber coupling setup. It consists of a couple of lights from one fiber to the other, thanks to two lenses. The ensemble [fiber+lense] is fixed and called a collimator so that the light is coupled from one collimator to another. Each collimator was precisely made in order to have a precise working distance. In the experiment, we measured and compared the Insertion Losses (IL) variations between both collimators with the distance between them (i.e., natural Gaussian beam coupling losses) and between both collimators in the different optical layouts tested, with the same optical length propagation. We will show that the IL variations of our setup are less than 0.05dB with respect to the IL variations of collimators alone.Keywords: free-space optics, variable optical delay lines, optical cavity, auto-alignment
Procedia PDF Downloads 99524 Evaluating the Effect of Splitting Wind Farms on Power Output
Authors: Nazanin Naderi, Milton Smith
Abstract:
Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation
Procedia PDF Downloads 586523 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope
Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov
Abstract:
Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions
Procedia PDF Downloads 322522 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 476521 Using Coupled Oscillators for Implementing Frequency Diverse Array
Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk
Abstract:
Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state
Procedia PDF Downloads 86520 Life Stage Customer Segmentation by Fine-Tuning Large Language Models
Authors: Nikita Katyal, Shaurya Uppal
Abstract:
This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication
Procedia PDF Downloads 23519 Orbital Tuning of Marl-Limestone Alternations (Upper Tithonian to Upper Berriasian) in North-South Axis (Tunisia): Geochronology and Sequence Implications
Authors: Hamdi Omar Omar, Hela Fakhfakh, Chokri Yaich
Abstract:
This work reflects the integration of different techniques, such as field sampling and observations, magnetic susceptibility measurement, cyclostratigaraphy and sequence stratigraphy. The combination of these results allows us to reconstruct the environmental evolution of the Sidi Khalif Formation in the North-South Axis (NOSA), aged of Upper Tithonian, Berriasian and Lower Valanginian. Six sedimentary facies were identified and are primarily influenced by open marine sedimentation receiving increasing terrigenous influx. Spectral analysis, based on MS variation (for the outcropped section) and wireline logging gamma ray (GR) variation (for the sub-area section) show a pervasive dominance of 405-kyr eccentricity cycles with the expression of 100-kyr eccentricity, obliquity and precession. This study provides (for the first time) a precise duration of 2.4 myr for the outcropped Sidi Khalif Formation with a sedimentation rate of 5.4 cm/kyr and the sub-area section to 3.24 myr with a sedimentation rate of 7.64 cm/kyr. We outlined 27 5th-order depositional sequences, 8 Milankovitch depositional sequences and 2 major 3rd-order cycles for the outcropping section, controlled by the long eccentricity (405 kyr) cycles and the precession index cycles. This study has demonstrated the potential of MS and GR to be used as proxies to develop an astronomically calibrated time-scale for the Mesozoic era.Keywords: Berriasian, magnetic susceptibility, orbital tuning, Sidi Khalif Formation
Procedia PDF Downloads 265518 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 190517 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning
Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira
Abstract:
Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.Keywords: additive manufacturing, porcelain, robocasting, R3D
Procedia PDF Downloads 162516 Macrocycles Enable Tuning of Uranyl Electrochemistry by Lewis Acids
Authors: Amit Kumar, Davide Lionetti, Victor Day, James Blakemore
Abstract:
Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by tailored macrocyclic ligands. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(μ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). X-ray diffraction (XRD) and cyclic voltammetry (CV) data suggest preferential binding of K+ in an 18-crown-6-like cavity and Na+ in a 15-crown-5-like cavity, both appended to Schiff-base type sites that selectively bind UO22+. CV data demonstrate that the UVI/UV reduction potential in these complexes shifts positive and the rate of electron transfer decreases with increasing Lewis acidity of the incorporated redox-inactive metals. Moreover, spectroelectrochemical studies confirm the formation of [UV] species in the case of monometallic UO22+ complex, consistent with results from prior studies. However, unique features were observed during spectroelectrochemical studies in the presence of the K+ ion, suggesting new insights into electronic structure may be accessible with the heterobimetallic complexes. Overall, these findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals.Keywords: electrochemistry, Lewis acid, macrocycle, uranyl
Procedia PDF Downloads 142515 Confluence of Relations: An Auto-Ethnographic Account of Field Recording in the Anthropocene Age
Authors: Freya Zinovieff
Abstract:
In the age of the Anthropocene, all ecosystems, no matter how remote, is influenced by the relations between humans and technology. These influences are evidenced by current extinction rates, changes in species diversity, and species adaptation to pollution. Field recording is a tool through which we are able to document the extent to which life forms associated with the place are entangled with human-technology relationships. This paper documents the convergence of interaction between technologies, species, and landscape via an auto-ethnographic account of a field recording taken from a cell phone tower in Bali, Indonesia. In the recording, we hear a confluence of relations where critter and technology meet. The electrical hum of the tower merges with frogs and the amaranthine throb of crickets, in such a way that it is hard to tell where technology begins and the voice of creatures ends. The outcomes of this venture resulted in a framework for evaluating the sensorial relations within field recording. The framework calls for the soundscape to be understood as a multilayered ontology through which there is a convergence of multispecies relationships, or entanglements, across time and geographic location. These entanglements are not necessarily obvious. Sometimes quiet, sometimes elusive, sometimes only audible through the mediated conduit of digital technology. The paper argues that to be aware of these entanglements is to open ourselves to a type of beauty that is firmly rooted in the present paradigm of extinction and loss. By virtue of this understanding, we are bestowed with an opportunity to embrace the grave reality of the current sixth mass extinction and move forwards with what activist Joanna Macy calls the compassionate action.Keywords: anthropocene, human-technology relationships, multispecies ethnography, field recording
Procedia PDF Downloads 150514 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4
Procedia PDF Downloads 460513 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates
Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park
Abstract:
Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon
Procedia PDF Downloads 239512 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria
Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong
Abstract:
Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000
Procedia PDF Downloads 336511 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 314510 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali
Abstract:
We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.Keywords: thin film, CdS, new method, optical properties
Procedia PDF Downloads 260509 Nano-Filled Matrix Reinforced by Woven Carbon Fibers Used as a Sensor
Authors: K. Hamdi, Z. Aboura, W. Harizi, K. Khellil
Abstract:
Improving the electrical properties of organic matrix composites has been investigated in several studies. Thus, to extend the use of composites in more varied application, one of the actual barrier is their poor electrical conductivities. In the case of carbon fiber composites, organic matrix are in charge of the insulating properties of the resulting composite. However, studying the properties of continuous carbon fiber nano-filled composites is less investigated. This work tends to characterize the effect of carbon black nano-fillers on the properties of the woven carbon fiber composites. First of all, SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone (figure1). In fact, by reaching the fiber zone, the carbon black nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black. This test was performed with the four points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 80S/cm to 150S/cm by adding 9wt% of carbon black and to 250S/cm by adding 17wt% of the same nano-filler. Thanks to these results, the use of this composite as a strain gauge might be possible. By the way, the study of the influence of a mechanical excitation (flexion, tensile) on the electrical properties of the composite by recording the variance of an electrical current passing through the material during the mechanical testing is possible. Three different configuration were performed depending on the rate of carbon black used as nano-filler. These investigation could lead to develop an auto-instrumented material.Keywords: carbon fibers composites, nano-fillers, strain-sensors, auto-instrumented
Procedia PDF Downloads 411508 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle
Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu
Abstract:
Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle
Procedia PDF Downloads 142507 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 132506 Development of Materials Based on Phosphates of NaZr2(PO4)3 with Low Thermal Expansion
Authors: V. Yu. Volgutov, A. I. Orlova, S. A. Khainakov
Abstract:
NaZr2(PO4)3 (NZP) and their structural analogues are characterized by a peculiar behaviors on heating – they have different expansion and contraction along different crystallographic directions due to specific arrangements of crystal structure in these compounds. An important feature of such structures is the ability to incorporate into their structural analogues wide variety of metal cations having different size and oxidation states, with different combinations and concentrations. These cations are located in different crystallographic non-equivalent positions of octahedral tetrahedral crystal framework as well as in inter-framework cavities. Through, due to iso- and hetero-valent isomorphism of the cations (and the anions) in NZP, it becomes possible to tuning the compositions and to obtain the compounds with ‘on a plan’ properties. For the design of compounds with low and ultra-low thermal expansion including those with tailored thermal expansion properties, the following crystallochemical principles it seems are promising: 1) Insertion into crystal M1 position the cations having different sizes and, 2) the variation in the composition of compounds, providing different occupation of crystal M1 position. Following these principles we have designed and synthesized the next NZP-type phosphates series: a) where radii of the cations in the M1 crystal position was varied: Zr1/4Zr2(PO4)3 - Th1/4Zr2(PO4)3 (series I); R1/3Zr2(PO4)3 where R= Nd, Eu, Er (series II), b) where the occupation of M1 crystal position was varied: Zr1/4Zr2(PO4)3-Er1/3Zr2(PO4)3 (series III) and Zr1/4Zr2(PO4)3-Sr1/2Zr2(PO4)3 (series IV). The thermal expansion parameters were determined over the range of 25-800ºC. For each series the minimum axial coefficient of thermal expansion αa = αb, αc and their anisotropy Δα = Iαa - αcI, 10-6 K-1 was found as next: -1.51, 1.07, 2.58 for Th1/4Zr2(PO4)3 (series I); -0.72, 0.10, 0.81 for Nd1/3Zr2(PO4)3 (series II); -2.78, 1.35, 4.12 for Er1/6Zr1/8Zr2(PO4)3 (series III); 2.23, 1.32, 0.91 for Sr1/2Zr2(PO4)3 (series IV). The measured tendencies of the thermal expansion of crystals were in good agreement with predicted ones. For one of the members from the studied phosphates namely Th1/16Zr3/16Zr2(PO4)3 structural refinement have been carried out at 25, 200, 600, and 800°C. The dependencies of the structural parameters with the temperature have been determined.Keywords: high-temperature crystallography, NaZr2(PO4)3, (NZP) analogs, structural-chemical principles, tuning thermal expansion
Procedia PDF Downloads 233505 Auto Calibration and Optimization of Large-Scale Water Resources Systems
Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari
Abstract:
Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.Keywords: auto-calibration, Gilan, large-scale water resources, simulation
Procedia PDF Downloads 335504 Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent
Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal
Abstract:
Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ.Keywords: Doxorubicin, auto dock, in silco, in vitro
Procedia PDF Downloads 419