Search results for: X-ray amorphous
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 268

Search results for: X-ray amorphous

148 Investigating the Mechanical Properties of Geopolymer Concrete Containing Microencapsulated Phase Change Materials

Authors: Shima Pilehvar, Vinh Duy Cao, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

Micro encapsulated phase change materials (MPCM) may be utilized to increase the energy efficiency of buildings by the addition of MPCM to concrete structures. However, addition of MPCM to Portland cement concrete is known to reduce the compressive strength of the concrete. Accordingly, it is interesting to also examine the effect of adding MPCM to geopolymer concrete. Geopolymer binder is synthesized by mixing aluminosilicate materials in amorphous form with a strong alkali activator, and have a much lower CO2 footprint than Portland cement concrete. In this study, the mechanical properties of fly ash-based geopolymer concrete with different types and contents of MPCM were investigated at different curing temperatures. The aim was to find the optimum amount of MPCM which still maintain the workability and compressive strength at an acceptable level. The results revealed that both workability and compressive strength of geopolymer concrete decrease after adding MPCM. Also, the percentage of strength reduction can be variable by different types of MPCM.

Keywords: compressive strength, concrete, curing, geopolymer, micro-encapsulated PCM

Procedia PDF Downloads 414
147 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications

Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin

Abstract:

Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.

Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength

Procedia PDF Downloads 157
146 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂

Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan

Abstract:

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.

Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅

Procedia PDF Downloads 291
145 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 195
144 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge

Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela

Abstract:

In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.

Keywords: supercapacitors, carbon, material science, batteries

Procedia PDF Downloads 84
143 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation

Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh

Abstract:

This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application.

Keywords: dewetting, themal annealing, metal, melting point, porous

Procedia PDF Downloads 657
142 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 432
141 Phase Transition in Iron Storage Protein Ferritin

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Ferritin is a protein which present in the blood of mammals. It maintains the need of iron inside the body. It has an antiferromagnetic iron core, 7-8 nm in size, which is encapsulated inside a protein cage. The thickness of this protein shell is about 2-3 nm. This protein shell reduces the interaction among particles and make ferritin a model superparamagnet. The major composition of ferritin core is mineral ferrihydrite. The molecular formula of ferritin core is (FeOOH)8[FeOOPO3H2]. In this study, we discuss the phase transition of ferritin. We characterized ferritin using x-ray diffractometer, transmission electron micrograph, thermogravimetric analyzer and vibrating sample magnetometer. It is found that ferritin core is amorphous in nature with average particle size of 8 nm. The thermogravimetric and differential thermogravimetric analysis curves shows mass loss at different temperatures. We heated ferritin at these temperatures. It is found that ferritin core starts decomposing after 390^o C. At 1020^o C, the ferritin core is finally converted to alpha phase of iron oxide. Magnetization behavior of final sample clearly shows the iron oxyhydroxide core is completely converted to alpha iron oxide.

Keywords: Antiferromagnetic, Ferritin, Phase, Superparamagnetic

Procedia PDF Downloads 119
140 Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator

Authors: Nikhil Jain, Bin Yu

Abstract:

We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown.

Keywords: graphene, field-effect transistors, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 426
139 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers

Authors: Lenka Matulova

Abstract:

Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.

Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties

Procedia PDF Downloads 239
138 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 285
137 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 256
136 Influence of Silica Fume on the Hydration of Cement Pastes Studied by Simultaneous TG-DSC Analysis

Authors: Anton Trník, Lenka Scheinherrová, Robert Černý

Abstract:

Silica fume is a by-product of the ferro-silicon and silicon metal industries. It is mainly in the form of amorphous silica. Silica fume belongs to pozzolanic active materials which can be used in concrete to improve its final properties. In this paper, the influence of silica fume on hydration of cement pastes is studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) at various curing times (2, 7, 28, and 90 days) in the temperature range from 25 to 1000 °C in an argon atmosphere. Samples are prepared from Portland cement CEM I 42.5 R which is partially replaced with the silica fume of 4, 8, and 12 wt.%. The water/binder ratio is chosen as 0.5. It is identified and described the liberation of physically bound water, calcium–silicate–hydrates dehydration, portlandite and calcite decomposition in studied samples. Also, it is found out that an exothermic peak at 950 °C is observed without a significant mass change for samples with 12 wt.% of silica fume after two days of hydration. This peak is probably caused by the pozzolanic reaction between silica fume and Portland cement. Its size corresponds to the degree of crystallization between Ca and Si. The portlandite content is lower for the samples with a higher amount of silica fume.

Keywords: differential scanning calorimetry, hydration, silica fume, thermogravimetry

Procedia PDF Downloads 239
135 Superconductor-Insulator Transition in Disordered Spin-1/2 Systems

Authors: E. Cuevas, M. Feigel'man, L. Ioffe, M. Mezard

Abstract:

The origin of continuous energy spectrum in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. While small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce thermal bath, thermal transport and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels which acquire a finite width. The important question is: What is the driving force and mechanism of transition(s) between two different types of many-body systems - with and without decoherence and thermal transport? Here, we address this question via two complementary approaches applied to the same model of quantum spin-1/2 system with XY-type exchange interaction and random transverse field. Namely, we develop analytical theory for this spin model on a Bethe lattice and implement numerical study of exact level statistics for the same spin model on random graph. This spin model is relevant to the study of pseudogaped superconductivity and S-I transition in some amorphous materials.

Keywords: strongly correlated electrons, quantum phase transitions, superconductor, insulator

Procedia PDF Downloads 582
134 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 243
133 Electrode Performance of Carbon Coated Nanograined LiFePO4 in Lithium Batteries

Authors: Princess Stephanie P. Llanos, Rinlee Butch M. Cervera

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, carbon-coated nanograined LiFePO4 is synthesized via wet chemistry method at a low temperature of 400 °C and investigated its performance as a cathode in Lithium battery. The X-ray diffraction pattern of the synthesized samples can be indexed to an orthorhombic LiFePO4 structure. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LiFePO4 and coating of amorphous carbon layer. Elemental mapping using Energy dispersive spectroscopy analysis revealed the homogeneous dispersion of Fe, P, O, and C elements. On the other hand, the electrochemical performances of the synthesized cathodes were investigated using cyclic voltammetry, galvanostatic charge/discharge tests with different C-rates, and cycling performances. Galvanostatic charge and discharge measurements revealed that the sample sintered at 400 °C for 3 hours with carbon coating demonstrated the highest capacity among the samples which reaches up to 160 mAhg⁻¹ at 0.1C rate.

Keywords: cathode, charge-discharge, electrochemical, lithium batteries

Procedia PDF Downloads 331
132 Comparison between Ultra-High-Performance Concrete and Ultra-High-Performance-Glass Concrete

Authors: N. A. Soliman, A. F. Omran, A. Tagnit-Hamou

Abstract:

The finely ground waste glass has successfully used by the authors to develop and patent an ecological ultra-high-performance concrete (UHPC), which was named as ultra-high-performance-glass concrete (UHPGC). After the successful development in laboratory, the current research presents a comparison between traditional UHPC and UHPGC produced using large-scale pilot plant mixer, in terms of rheology, mechanical, and durability properties. The rheology of the UHPGCs was improved due to the non-absorptive nature of the glass particles. The mechanical performance of UHPGC was comparable and very close to the traditional UHPC due to the pozzolan reactivity of the amorphous waste glass. The UHPGC has also shown excellent durability: negligible permeability (chloride-ion ≈ 20 Coulombs from the RCPT test), high abrasion resistance (volume loss index less than 1.3), and almost no freeze-thaw deterioration even after 1000 freeze-thaw cycles. The enhancement in the strength and rigidity of the UHPGC mixture can be referred to the inclusions of the glass particles that have very high strength and elastic modulus.

Keywords: ground glass pozzolan, large-scale production, sustainability, ultra-high performance glass concrete

Procedia PDF Downloads 157
131 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 118
130 Cold Crystallization of Poly (Ether Ether Ketone)/Graphene Composites by Time-Resolved Synchrotron X-Ray Diffraction

Authors: A. Alvaredo , R. Guzman De Villoria, P. Castell, Juan P. Fernandez-Blazquez

Abstract:

Since graphene was discovered in 2004, has been considered as superb material, due to its outstanding mechanical, electrical and thermal properties. Graphene has been incorporated as reinforcement in several high performance polymers in order to obtain a good balance of properties and to get new properties as thermal or electric conductivity. As well known, the properties of semicrystalline polymer and its composites depends heavily on degree of crystallinity. In this context, our research group has studied the crystallization behavior from amorphous state of PEEK/GNP composites. The monitoring of cold crystallization processes studied by time-resolved simultaneous wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). These techniques allowed to get an extremely relevant information about the evolution of the morphology of the PEEK/GNP composites. In addition, the thermal evolution of cold crystallization was followed by differential scanning calorimetry (DSC) as well. The experimental results showed changes in crystallization kinetics and c parameter unit cell when adding graphene. The main aim of this work is to produce PEEK/GNP composites and characterize their morphology, unit cell parameters and crystallization kinetic.

Keywords: PEEK, graphene, synchrotron, cold crystallization

Procedia PDF Downloads 349
129 Diethylsulfoxide versus Dimethylsulfoxide: Properties and Biomedical Applications

Authors: Shiraz A. Markarian

Abstract:

Our systematic studies of diethylsulfoxide (DESO), the nearest homologue of dimethylsulfoxide (DMSO), reveal new physicochemical features. DESO has already received worthy biomedical applications: in some cases even are more pronounced compare with DMSO. The several important physicochemical characteristics of DESO including aqueous solutions have been verified and first reported: melting point of pure substance, density, dielectric relaxation data, vapor pressure and volumetric properties. Analysis of the complete vibrational spectra also leads to the conclusion that very strong interactions take place between DESO and water, even stronger than those between DMSO and water. The simultaneous existence of strong DESO-H₂O and DESO-DESO interactions suggest the coexistence of many types of structural molecular aggregates, the presence of which plays a significant role also in diluted water solutions. Our recent investigations have shown that aqueous solution of DESO could provide amorphous, glassy systems, thus avoiding ice crystallization, in a wide range of concentrations and even at very low cooling rates. The ability of DESO to act as an effective cryoprotectant on E. coli survival was also studied and compared with other commonly used cryoprotective agents. The results also confirm that DESO, more than DMSO, is able to penetrate living tissues without causing significant damage.

Keywords: diethylsulfoxide, dimethylsulfoxide, cryoprotectant, properties

Procedia PDF Downloads 168
128 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 433
127 Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide

Authors: Wenting Ye

Abstract:

The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix.

Keywords: in-situ carbide, tribological behavior, medium entropy alloy matrix composite, graphene

Procedia PDF Downloads 31
126 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures

Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia

Abstract:

Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.

Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst

Procedia PDF Downloads 54
125 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films

Authors: Esubalew Yehualaw Melaku, Tizazu Abeza

Abstract:

ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.

Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells

Procedia PDF Downloads 131
124 Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films

Authors: S. Yakut, D. Deger, K. Ulutas, D. Bozoglu

Abstract:

Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior.

Keywords: plasma polymers, dead layer, dielectric spectroscopy, AC conductivity

Procedia PDF Downloads 205
123 A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles

Authors: Pyar S. Jassal, Sonal Gupta, Neema Chand, Rajni Johar

Abstract:

In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP.

Keywords: low molecular weight chitosan nanoparticles, anthraquinone dye, removal efficiency, adsorption isotherm

Procedia PDF Downloads 135
122 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 104
121 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents

Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub

Abstract:

In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.

Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model

Procedia PDF Downloads 224
120 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material

Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz

Abstract:

Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.

Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material

Procedia PDF Downloads 66
119 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 325