Search results for: Stochastic process.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15609

Search results for: Stochastic process.

15489 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 517
15488 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 316
15487 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 513
15486 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach

Authors: Ho Yuan-Hong, Huang Chiung-Ju

Abstract:

This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a "debt"⁄"GDP" ratio of 0.2, increases in the "debt"⁄"GDP " ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the "debt"⁄"GDP" ratio is greater than 40%, the welfare will be negative and result in welfare loss.

Keywords: debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization

Procedia PDF Downloads 359
15485 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption

Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko

Abstract:

Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.

Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.

Procedia PDF Downloads 110
15484 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 71
15483 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards

Authors: Nicholas Burica, Nina Selak

Abstract:

The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.

Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization

Procedia PDF Downloads 193
15482 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization

Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford

Abstract:

The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.

Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator

Procedia PDF Downloads 134
15481 Frailty Patterns in the US and Implications for Long-Term Care

Authors: Joelle Fong

Abstract:

Older persons are at greatest risk of becoming frail. As survival to the age of 80 and beyond continues to increase, the health and frailty of older Americans has garnered much recent attention among policy makers and healthcare administrators. This paper examines patterns in old-age frailty within a multistate actuarial model that characterizes the stochastic process of biological ageing. Using aggregate population-level U.S. mortality data, we implement a stochastic aging model to examine cohort trends and gender differences in frailty distributions for older Americans born 1865 – 1894. The stochastic ageing model, which draws from the fields of actuarial science and gerontology, is well-established in the literature. The implications for public health insurance programs are also discussed. Our results suggest that, on average, women tend to be frailer than men at older ages and reveal useful insights about the magnitude of the male-female differential at critical age points. Specifically, we note that the frailty statuses of males and females are actually quite comparable from ages 65 to 80. Beyond age 80, however, the frailty levels start to diverge considerably implying that women are moving quicker into worse states of health than men. Tracking average frailty by gender over 30 successive birth cohorts, we also find that frailty levels for both genders follow a distinct peak-and-trough pattern. For instance, frailty among 85-year old American survivors increased in years 1954-1963, decreased in years 1964-1971, and again started to increase in years 1972-1979. A number of factors may have accounted for these cohort differences including differences in cohort life histories, differences in disease prevalence, differences in lifestyle and behavior, differential access to medical advances, as well as changes in environmental risk factors over time. We conclude with a discussion on the implications of our findings on spending for long-term care programs within the broader health insurance system.

Keywords: actuarial modeling, cohort analysis, frail elderly, health

Procedia PDF Downloads 246
15480 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic

Procedia PDF Downloads 111
15479 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 430
15478 Forecasting Silver Commodity Prices Using Geometric Brownian Motion: A Stochastic Approach

Authors: Sina Dehghani, Zhikang Rong

Abstract:

Historically, a variety of approaches have been taken to forecast commodity prices due to the significant implications of these values on the global economy. An accurate forecasting tool for a valuable commodity would significantly benefit investors and governmental agencies. Silver, in particular, has grown significantly as a commodity in recent years due to its use in healthcare and technology. This manuscript aims to utilize the Geometric Brownian Motion predictive model to forecast silver commodity prices over multiple 3-year periods. The results of the study indicate that the model has several limitations, particularly its inability to work effectively over longer periods of time, but still was extremely effective over shorter time frames. This study sets a baseline for silver commodity forecasting with GBM, and the model could be further strengthened with refinement.

Keywords: geometric Brownian motion, commodity, risk management, volatility, stochastic behavior, price forecasting

Procedia PDF Downloads 25
15477 Design and Implementation of Pseudorandom Number Generator Using Android Sensors

Authors: Mochamad Beta Auditama, Yusuf Kurniawan

Abstract:

A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.

Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators

Procedia PDF Downloads 376
15476 Designing Emergency Response Network for Rail Hazmat Shipments

Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma

Abstract:

The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.

Keywords: hazmat, rail network, stochastic programming, emergency response

Procedia PDF Downloads 182
15475 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 325
15474 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 10
15473 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load

Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais

Abstract:

In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.

Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression

Procedia PDF Downloads 276
15472 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 323
15471 Impact Evaluation and Technical Efficiency in Ethiopia: Correcting for Selectivity Bias in Stochastic Frontier Analysis

Authors: Tefera Kebede Leyu

Abstract:

The purpose of this study was to estimate the impact of LIVES project participation on the level of technical efficiency of farm households in three regions of Ethiopia. We used household-level data gathered by IRLI between February and April 2014 for the year 2013(retroactive). Data on 1,905 (754 intervention and 1, 151 control groups) sample households were analyzed using STATA software package version 14. Efforts were made to combine stochastic frontier modeling with impact evaluation methodology using the Heckman (1979) two-stage model to deal with possible selectivity bias arising from unobservable characteristics in the stochastic frontier model. Results indicate that farmers in the two groups are not efficient and operate below their potential frontiers i.e., there is a potential to increase crop productivity through efficiency improvements in both groups. In addition, the empirical results revealed selection bias in both groups of farmers confirming the justification for the use of selection bias corrected stochastic frontier model. It was also found that intervention farmers achieved higher technical efficiency scores than the control group of farmers. Furthermore, the selectivity bias-corrected model showed a different technical efficiency score for the intervention farmers while it more or less remained the same for that of control group farmers. However, the control group of farmers shows a higher dispersion as measured by the coefficient of variation compared to the intervention counterparts. Among the explanatory variables, the study found that farmer’s age (proxy to farm experience), land certification, frequency of visit to improved seed center, farmer’s education and row planting are important contributing factors for participation decisions and hence technical efficiency of farmers in the study areas. We recommend that policies targeting the design of development intervention programs in the agricultural sector focus more on providing farmers with on-farm visits by extension workers, provision of credit services, establishment of farmers’ training centers and adoption of modern farm technologies. Finally, we recommend further research to deal with this kind of methodological framework using a panel data set to test whether technical efficiency starts to increase or decrease with the length of time that farmers participate in development programs.

Keywords: impact evaluation, efficiency analysis and selection bias, stochastic frontier model, Heckman-two step

Procedia PDF Downloads 77
15470 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 152
15469 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 271
15468 On Virtual Coordination Protocol towards 5G Interference Mitigation: Modelling and Performance Analysis

Authors: Bohli Afef

Abstract:

The fifth-generation (5G) wireless systems is featured by extreme densities of cell stations to overcome the higher future demand. Hence, interference management is a crucial challenge in 5G ultra-dense cellular networks. In contrast to the classical inter-cell interference coordination approach, which is no longer fit for the high density of cell-tiers, this paper proposes a novel virtual coordination based on the dynamic common cognitive monitor channel protocol to deal with the inter-cell interference issue. A tractable and flexible model for the coverage probability of a typical user is developed through the use of the stochastic geometry model. The analyses of the performance of the suggested protocol are illustrated both analytically and numerically in terms of coverage probability.

Keywords: ultra dense heterogeneous networks, dynamic common channel protocol, cognitive radio, stochastic geometry, coverage probability

Procedia PDF Downloads 326
15467 Optimal Management of Forest Stands under Wind Risk in Czech Republic

Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson

Abstract:

Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.

Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk

Procedia PDF Downloads 148
15466 On Generalized Cumulative Past Inaccuracy Measure for Marginal and Conditional Lifetimes

Authors: Amit Ghosh, Chanchal Kundu

Abstract:

Recently, the notion of past cumulative inaccuracy (CPI) measure has been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α (alpha) and study the proposed measure for conditionally specified models of two components failed at different time instants called generalized conditional CPI (GCCPI). We provide some bounds using usual stochastic order and investigate several properties of GCCPI. The effect of monotone transformation on this proposed measure has also been examined. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Moreover, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.

Keywords: cumulative past inaccuracy, marginal and conditional past lifetimes, conditional proportional reversed hazard rate model, usual stochastic order

Procedia PDF Downloads 254
15465 Optimal Delivery of Two Similar Products to N Ordered Customers

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering products located at a central depot to customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from the depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity of the goods that must be delivered. In the present work, we present a specific capacitated stochastic vehicle routing problem which has realistic applications to distributions of materials to shops or to healthcare facilities or to military units. A vehicle starts its route from a depot loaded with items of two similar but not identical products. We name these products, product 1 and product 2. The vehicle must deliver the products to N customers according to a predefined sequence. This means that first customer 1 must be serviced, then customer 2 must be serviced, then customer 3 must be serviced and so on. The vehicle has a finite capacity and after servicing all customers it returns to the depot. It is assumed that each customer prefers either product 1 or product 2 with known probabilities. The actual preference of each customer becomes known when the vehicle visits the customer. It is also assumed that the quantity that each customer demands is a random variable with known distribution. The actual demand is revealed upon the vehicle’s arrival at customer’s site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed during its route to return to the depot to restock with quantities of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. If there is shortage for the desired product, it is permitted to deliver the other product at a reduced price. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the expected total cost among all possible strategies. It is possible to find the optimal routing strategy using a suitable stochastic dynamic programming algorithm. It is also possible to prove that the optimal routing strategy has a specific threshold-type structure, i.e. it is characterized by critical numbers. This structural result enables us to construct an efficient special-purpose dynamic programming algorithm that operates only over those routing strategies having this structure. The findings of the present study lead us to the conclusion that the dynamic programming method may be a very useful tool for the solution of specific vehicle routing problems. A problem for future research could be the study of a similar stochastic vehicle routing problem in which the vehicle instead of delivering, it collects products from ordered customers.

Keywords: collection of similar products, dynamic programming, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 267
15464 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 261
15463 Elementary Education Outcome Efficiency in Indian States

Authors: Jyotsna Rosario, K. R. Shanmugam

Abstract:

Since elementary education is a merit good, considerable public resources are allocated to universalise it. However, elementary education outcomes vary across the Indian States. Evidences indicate that while some states are lagging in elementary education outcome primarily due to lack of resources and poor schooling infrastructure, others are lagging despite resource abundance and well-developed schooling infrastructure. Addressing the issue of efficiency, the study employs Stochastic Frontier Analysis for panel data of 27 Indian states from 2012-13 to 2017-18 to estimate the technical efficiency of State governments in generating enrolment. The mean efficiency of states was estimated to be 58%. Punjab, Meghalaya, and West Bengal were found to be the most efficient states. Whereas Jammu and Kashmir, Nagaland, Madhya Pradesh, and Odisha are one of the most inefficient states. This study emphasizes the efficient utilisation of public resources and helps in the identification of best practices.

Keywords: technical efficiency, public expenditure, elementary education outcome, stochastic frontier analysis

Procedia PDF Downloads 187
15462 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 417
15461 Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach

Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.

Keywords: efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach

Procedia PDF Downloads 269
15460 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity

Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon

Abstract:

Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.

Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry

Procedia PDF Downloads 335