Search results for: Gaussian Conditional Random Field
10556 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma
Authors: Sandeep Kumar, Naveen Gupta
Abstract:
Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density
Procedia PDF Downloads 20110555 The Use of Authentic Videos to Change Learners’ Negative Attitudes and Perceptions toward Grammar Learning
Authors: Khaldi Youcef
Abstract:
This investigation seeks to inquire into the effectiveness of using authentic videos for grammar teaching purposes. In this investigation, an English animated situation, Hercules, was used as a type of authentic multimedia to teach a particular grammatical structure, namely conditional sentences. This study also aims at investigating the EFL learners’ attitudes toward grammar learning after being exposed to such an authentic video. To reach that purpose, 56 EFL learners were required ultimately to respond to a questionnaire with an aim to reveal their attitudes towards grammar as a language entity and as a subject for being learned. Then, as a second stage of the investigation, the EFL learners were divided into a control group and an experimental group with 28 learners in each. The first group was taught grammar -conditional sentences- using a deductive-inductive approach, while the second group was exposed to an authentic video to learn conditional sentences. There was a post-lesson stage that included a questionnaire to be answered by learners of each group. The aim of this stage is to capture any change in learners' attitudes shown in the pre-lesson questionnaire. The findings of the first stage revealed learners' negative attitudes towards grammar learning. And the third stage results showed the effectiveness of authentic videos in entirely turning learners' attitudes toward grammar learning to be significantly positive. Also, the utility of authentic videos in highly motivating EFL learners can be deduced. The findings of this survey asserted the need for incorporation and integration of authentic videos in EFL classrooms as they resulted in rising effectively learners’ awareness of grammar and looking at it from a communicative perspective.Keywords: multimedia, authentic videos, negative attitudes, grammar learning, EFL learners
Procedia PDF Downloads 9910554 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 20410553 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 19210552 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial
Procedia PDF Downloads 63510551 Effect of Correlation of Random Variables on Structural Reliability Index
Authors: Agnieszka Dudzik
Abstract:
The problem of correlation between random variables in the structural reliability analysis has been extensively discussed in literature on the subject. The cases taken under consideration were usually related to correlation between random variables from one side of ultimate limit state: correlation between particular loads applied on structure or correlation between resistance of particular members of a structure as a system. It has been proved that positive correlation between these random variables reduces the reliability of structure and increases the probability of failure. In the paper, the problem of correlation between random variables from both side of the limit state equation will be taken under consideration. The simplest case where these random variables are of the normal distributions will be concerned. The case when a degree of that correlation is described by the covariance or the coefficient of correlation will be used. Special attention will be paid on questions: how much that correlation changes the reliability level and can it be ignored. In reliability analysis will be used well-known methods for assessment of the failure probability: based on the Hasofer-Lind reliability index and Monte Carlo method adapted to the problem of correlation. The main purpose of this work will be a presentation how correlation of random variables influence on reliability index of steel bar structures. Structural design parameters will be defined as deterministic values and random variables. The latter will be correlated. The criterion of structural failure will be expressed by limit functions related to the ultimate and serviceability limit state. In the description of random variables will be used only for the normal distribution. Sensitivity of reliability index to the random variables will be defined. If the reliability index sensitivity due to the random variable X will be low when compared with other variables, it can be stated that the impact of this variable on failure probability is small. Therefore, in successive computations, it can be treated as a deterministic parameter. Sensitivity analysis leads to simplify the description of the mathematical model, determine the new limit functions and values of the Hasofer-Lind reliability index. In the examples, the NUMPRESS software will be used in the reliability analysis.Keywords: correlation of random variables, reliability index, sensitivity of reliability index, steel structure
Procedia PDF Downloads 23710550 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 66710549 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: spacecraft control, quantized control, nonlinear control, random dither method
Procedia PDF Downloads 18010548 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 9410547 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance
Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien
Abstract:
Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.Keywords: waveguide, surface plasmons, electromagnetic theory
Procedia PDF Downloads 47710546 Geo-Additive Modeling of Family Size in Nigeria
Authors: Oluwayemisi O. Alaba, John O. Olaomi
Abstract:
The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.Keywords: Bayesian analysis, family size, geo-additive model, negative binomial
Procedia PDF Downloads 54110545 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 15710544 A Multilevel Authentication Protocol: MAP in VANET for Human Safety
Authors: N. Meddeb, A. M. Makhlouf, M. A. Ben Ayed
Abstract:
Due to the real-time requirement of message in Vehicular Ad hoc NETworks (VANET), it is necessary to authenticate vehicles to achieve security, efficiency, and conditional privacy-preserving. Privacy is of utmost relevance in VANETs. For this reason, we have proposed a new protocol called ‘Multilevel Authentication Protocol’ (MAP) that considers different vehicle categories. The proposed protocol is based on our Multilevel Authentication protocol for Vehicular networks (MAVnet). But the MAP leads to human safety, where the priority is given to the ambulance vehicles. For evaluation, we used the Java language to develop a demo application and deployed it on the Network Security Simulation (Nessi2). Compared with existing authentication protocols, MAP markedly enhance the communication overhead and decreases the delay of exchanging messages while preserving conditional privacy.Keywords: Vehicular Ad hoc NETworks (VANET), vehicle categories, safety, databases, privacy, authentication, throughput, delay
Procedia PDF Downloads 29610543 Generation of Symmetric Key Using Randomness of Hash Function
Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar
Abstract:
In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation
Procedia PDF Downloads 16110542 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, financial returns, predictive distribution, quantile function model
Procedia PDF Downloads 36710541 Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface
Authors: K. Al-Heuseen, M. R. Hashim
Abstract:
The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2.Keywords: electrical properties, Gaussian distribution, Pd-GaN Schottky diodes, thermionic emission
Procedia PDF Downloads 27710540 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 52110539 Levy Model for Commodity Pricing
Authors: V. Benedico, C. Anacleto, A. Bearzi, L. Brice, V. Delahaye
Abstract:
The aim in present paper is to construct an affordable and reliable commodity prices based on a recalculation of its cost through time which allows visualize the potential risks and thus, take more appropriate decisions regarding forecasts. Here attention has been focused on Levy model, more reliable and realistic than classical random Gaussian one as it takes into consideration observed abrupt jumps in case of sudden price variation. In application to Energy Trading sector where it has never been used before, equations corresponding to Levy model have been written for electricity pricing in European market. Parameters have been set in order to predict and simulate the price and its evolution through time to remarkable accuracy. As predicted by Levy model, the results show significant spikes which reach unconventional levels contrary to currently used Brownian model.Keywords: commodity pricing, Lévy Model, price spikes, electricity market
Procedia PDF Downloads 42910538 Spatially Random Sampling for Retail Food Risk Factors Study
Authors: Guilan Huang
Abstract:
In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling
Procedia PDF Downloads 35010537 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise
Authors: Mahboobeh Eghtesad, Reza Mohseni
Abstract:
We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target
Procedia PDF Downloads 35810536 Volatility Spillover and Hedging Effectiveness between Gold and Stock Markets: Evidence for BRICS Countries
Authors: Walid Chkili
Abstract:
This paper investigates the dynamic relationship between gold and stock markets using data for BRICS counties. For this purpose, we estimate three multivariate GARCH models (namely CCC, DCC and BEKK) for weekly stock and gold data. Our main objective is to examine time variations in conditional correlations between the two assets and to check the effectiveness use of gold as a hedge for equity markets. Empirical results reveal that dynamic conditional correlations switch between positive and negative values over the period under study. This correlation is negative during the major financial crises suggesting that gold can act as a safe haven during the major stress period of stock markets. We also evaluate the implications for portfolio diversification and hedging effectiveness for the pair gold/stock. Our findings suggest that adding gold in the stock portfolio enhance its risk-adjusted return.Keywords: gold, financial markets, hedge, multivariate GARCH
Procedia PDF Downloads 47210535 TRNG Based Key Generation for Certificateless Signcryption
Authors: S.Balaji, R.Sujatha, M. Ramakrishnan
Abstract:
Signcryption is a cryptographic primitive that fulfills both the functions of digital signature and public key encryption simultaneously in low cost when compared with the traditional signature-then-encryption approach. In this paper, we propose a novel mouse movement based key generation technique to generate secret keys which is secure against the outer and insider attacks. Tag Key Encapsulation Mechanism (KEM) process is implemented using True Random Number Generator (TRNG) method. This TRNG based key is used for data encryption in the Data Encapsulation Mechanism (DEM). We compare the statistical reports of the proposed system with the previous methods which implements TKEM based on pseudo random number generatorKeywords: pseudo random umber generator, signcryption, true random number generator, node deployment
Procedia PDF Downloads 34110534 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills
Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin
Abstract:
When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.Keywords: metacognitive thinking skills, procedural knowledge, conditional knowledge, meta-teaching and regulation of cognitive
Procedia PDF Downloads 40910533 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries
Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 35510532 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization
Procedia PDF Downloads 28110531 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis
Authors: Deng Zengming, Wang Mingjiang
Abstract:
As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis
Procedia PDF Downloads 25010530 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 34910529 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature
Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai
Abstract:
Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume
Procedia PDF Downloads 28710528 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 15110527 Evaluation of Spatial Correlation Length and Karhunen-Loeve Expansion Terms for Predicting Reliability Level of Long-Term Settlement in Soft Soils
Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi
Abstract:
The spectral random field method is one of the widely used methods to obtain more reliable and accurate results in geotechnical problems involving material variability. Karhunen-Loeve (K-L) expansion method was applied to perform random field discretization of cross-correlated creep parameters. Karhunen-Loeve expansion method is based on eigenfunctions and eigenvalues of covariance function adopting Kernel integral solution. In this paper, the accuracy of Karhunen-Loeve expansion was investigated to predict long-term settlement of soft soils adopting elastic visco-plastic creep model. For this purpose, a parametric study was carried to evaluate the effect of K-L expansion terms and spatial correlation length on the reliability of results. The results indicate that small values of spatial correlation length require more K-L expansion terms. Moreover, by increasing spatial correlation length, the coefficient of variation (COV) of creep settlement increases, confirming more conservative and safer prediction.Keywords: Karhunen-Loeve expansion, long-term settlement, reliability analysis, spatial correlation length
Procedia PDF Downloads 159