Search results for: Dense Networks
3106 Dimensioning of Circuit Switched Networks by Using Simulation Code Based On Erlang (B) Formula
Authors: Ali Mustafa Elshawesh, Mohamed Abdulali
Abstract:
The paper presents an approach to dimension circuit switched networks and find the relationship between the parameters of the circuit switched networks on the condition of specific probability of call blocking. Our work is creating a Simulation code based on Erlang (B) formula to draw graphs which show two curves for each graph; one of simulation and the other of calculated. These curves represent the relationships between average number of calls and average call duration with the probability of call blocking. This simulation code facilitates to select the appropriate parameters for circuit switched networks.Keywords: Erlang B formula, call blocking, telephone system dimension, Markov model, link capacity
Procedia PDF Downloads 6113105 The Role of Online Social Networks in Social Movements: Social Polarization and Violations against Social Unity and Privacy of Individuals in Turkey
Authors: Tolga Yazıcı
Abstract:
As a matter of the fact that online social networks like Twitter, Facebook and MySpace have experienced an extensive growth in recent years. Social media offers individuals with a tool for communicating and interacting with one another. These social networks enable people to stay in touch with other people and express themselves. This process makes the users of online social networks active creators of content rather than being only consumers of traditional media. That’s why millions of people show strong desire to learn the methods and tools of digital content production and necessary communication skills. However, the booming interest in communication and interaction through online social networks and high level of eagerness to invent and implement the ways to participate in content production raise some privacy and security concerns. This presentation aims to open the assumed revolutionary, democratic and liberating nature of the online social media up for discussion by reviewing some recent political developments in Turkey. Firstly, the role of Internet and online social networks in mobilizing collective movements through social interactions and communications will be questioned. Secondly, some cases from Gezi and Okmeydanı Protests and also December 17-25 period will be presented in order to illustrate misinformation and manipulation in social media and violation of individual privacy through online social networks in order to damage social unity and stability contradictory to democratic nature of online social networking.Keywords: online social media networks, democratic participation, social movements, social polarization, privacy of individuals, Turkey
Procedia PDF Downloads 3413104 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic
Authors: Mehieddine Bouatrous
Abstract:
Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability
Procedia PDF Downloads 773103 Anatomical, Light and Scanning Electron Microscopical Study of Ostrich (Struthio camelus) Integument
Authors: Samir El-Gendy, Doaa Zaghloul
Abstract:
The current study dealt with the gross and microscopic anatomy of the integument of male ostrich in addition to the histological features of different areas of skin by light and SEM. The ostrich skin is characterized by prominent feather follicles and bristles. The number of feather follicles was determined per cm2 in different regions. The integument of ostrich had many modifications which appeared as callosities and scales, nail and toe pads. They were sternal, pubic and Achilles tendon callosities. The vacuolated epidermal cells were seen mainly in the skin of legs and to a lesser extent in the skin of back and Achilles areas. Higher lipogenic potential was expressed by epidermis from glabrous areas of ostrich skin. The dermal papillae were found in the skin of feathered area of neck and back and this was not a common finding in bird's skin which may give resistance against shearing forces in these regions of ostrich skin. The thickness of the keratin layer of ostrich varied, being thick and characteristically loose in the skin at legs, very thin and wavy at neck, while at Achilles skin area, scale and toe pad were thick and more compact, with the thickest very dense and wavy keratin layer at the nail. The dermis consisted of superficial layer of dense irregular connective tissue characterized by presence of many vacuoles of different sizes just under the basal lamina of the epithelium of epidermis and deep layer of dense regular connective tissue. This result suggested presence of fat droplets in this layer which may be to overcome the lack of good barrier of cutaneous water loss in epidermis.Keywords: ostrich, light microscopy, scanning electron microscopy, integument, skin modifications
Procedia PDF Downloads 2443102 Load-Settlement Behaviour of Geogrid-Reinforced Sand Bed over Granular Piles
Authors: Sateesh Kumar Pisini, Swetha Priya Darshini Thammadi, Sanjay Kumar Shukla
Abstract:
Granular piles are a popular ground improvement technique in soft cohesive soils as well as for loose non-cohesive soils. The present experimental study has been carried out on granular piles in loose (Relative density = 30%) and medium dense (Relative density = 60%) sands with geogrid reinforcement within the sand bed over the granular piles. A group of five piles were installed in the sand at different spacing, s = 2d, 3d and 4d, d being the diameter of the pile. The length (L = 0.4 m) and diameter (d = 50 mm) of the piles were kept constant for all the series of experiments. The load-settlement behavior of reinforced sand bed and granular piles system was studied by applying the load on a square footing. The results show that the effect of reinforcement increases the load bearing capacity of the piles. It is also found that an increase in spacing between piles decreases the settlement for both loose and medium dense soil.Keywords: granular pile, load-carrying capacity, settlement, geogrid reinforcement, sand
Procedia PDF Downloads 3913101 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.Keywords: cognitive radio, neural network, prediction, primary user
Procedia PDF Downloads 3713100 Experimental Networks Synchronization of Chua’s Circuit in Different Topologies
Authors: Manuel Meranza-Castillon, Rolando Diaz-Castillo, Adrian Arellano-Delgado, Cesar Cruz-Hernandez, Rosa Martha Lopez-Gutierrez
Abstract:
In this work, we deal with experimental network synchronization of chaotic nodes with different topologies. Our approach is based on complex system theory, and we use a master-slave configuration to couple the nodes in the networks. In particular, we design and implement electronically complex dynamical networks composed by nine coupled chaotic Chua’s circuits with topologies: in nearest-neighbor, small-world, open ring, star, and global. Also, network synchronization is evaluated according to a particular coupling strength for each topology. This study is important by the possible applications to private transmission of information in a chaotic communication network of multiple users.Keywords: complex networks, Chua's circuit, experimental synchronization, multiple users
Procedia PDF Downloads 3483099 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation
Authors: Elaheh Vaezpour
Abstract:
Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption
Procedia PDF Downloads 3343098 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 6923097 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 1623096 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1573095 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand
Authors: Mohamed M. Shahin
Abstract:
This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction
Procedia PDF Downloads 3633094 A Learning Automata Based Clustering Approach for Underwater Sensor Networks to Reduce Energy Consumption
Authors: Motahareh Fadaei
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: clustering, energy consumption, learning automata, underwater sensor networks
Procedia PDF Downloads 3143093 Detecting Black Hole Attacks in Body Sensor Networks
Authors: Sara Alshehri, Bayan Alenzi, Atheer Alshehri, Samia Chelloug, Zainab Almry, Hussah Albugmai
Abstract:
This paper concerns body area networks sensor that collect signals around a human body. The black hole attacks are the main security challenging problem because the data traffic can be dropped at any node. The focus of our proposed solution is to efficiently route data packets while detecting black hole nodes.Keywords: body sensor networks, security, black hole, routing, broadcasting, OMNeT++
Procedia PDF Downloads 6453092 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.Keywords: neural networks, pattern learning, security, wireless sensor networks
Procedia PDF Downloads 4043091 Adequacy of Museums' Internet Resources to Infantile and Young Public
Authors: Myriam Ferreira
Abstract:
Websites and social networks allow museums to divulge their works by new and attractive means. Besides, these technologies provide tools to generate a new history of art’s contents and promote visits to their installations. At the same time, museums are proposing more and more activities to families, children and young people. However, these activities usually take place in the museum’s physical installations, while websites and social networks seem to be mainly targeted to adults. The problem is that being children and young people digital natives, they feel apart from museums, so they need a presence of museums in digital means to feel attracted to them. Some institutions are making efforts to fill this vacuum. In this paper, resources designed specifically for children and teenagers have been selected from websites and social networks of five Spanish Museums: Prado Museum, Thyssen Museum, Guggenheim Museum, America Museum and Cerralbo Museum. After that, we have carried out an investigation in a school with children and teenagers between 11 and 15 years old. Those young people have been asked about their valuation of those web pages and social networks, with quantitative-qualitative questions. The results show that the least rated resources were videos and social networks because they were considered ‘too serious’, while the most rated were games and augmented reality. These ratings confirm theoretical papers that affirm that the future of technologies applied to museums is edutainment and interaction.Keywords: children, museums, social networks, teenagers, websites
Procedia PDF Downloads 1493090 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2273089 Analysis of Delivery of Quad Play Services
Authors: Rahul Malhotra, Anurag Sharma
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: FTTH, quad play, play service, access networks, data rate
Procedia PDF Downloads 4143088 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks
Authors: Si-Gwan Kim
Abstract:
In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait
Procedia PDF Downloads 1233087 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 2603086 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 4523085 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 933084 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.Keywords: smart grid network, security, threats, vulnerabilities
Procedia PDF Downloads 1393083 The Study of ZigBee Protocol Application in Wireless Networks
Authors: Ardavan Zamanpour, Somaieh Yassari
Abstract:
ZigBee protocol network was developed in industries and MIT laboratory in 1997. ZigBee is a wireless networking technology by alliance ZigBee which is designed to low board and low data rate applications. It is a Protocol which connects between electrical devises with very low energy and cost. The first version of IEEE 802.15.4 which was formed ZigBee was based on 2.4GHZ MHZ 912MHZ 868 frequency band. The name of system is often reminded random directions that bees (BEES) traversing during pollination of products. Such as alloy of the ways in which information packets are traversed within the mesh network. This paper aims to study the performance and effectiveness of this protocol in wireless networks.Keywords: ZigBee, protocol, wireless, networks
Procedia PDF Downloads 3693082 An Interactive Methodology to Demonstrate the Level of Effectiveness of the Synthesis of Local-Area Networks
Abstract:
This study focuses on disconfirming that wide-area networks can be made mobile, highly-available, and wireless. This methodological test shows that IPv7 and context-free grammar are mismatched. In the cases of robots, a similar tendency is also revealed. Further, we also prove that public-private key pairs could be built embedded, adaptive, and wireless. Finally, we disconfirm that although hash tables can be made distributed, interposable, and autonomous, XML and DNS can interfere to realize this purpose. Our experiments soon proved that exokernelizing our replicated Knesis keyboards was more significant than interrupting them. Our experiments exhibited degraded average sampling rate.Keywords: collaborative communication, DNS, local-area networks, XML
Procedia PDF Downloads 1873081 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1053080 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3573079 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1943078 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks
Procedia PDF Downloads 1423077 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks
Procedia PDF Downloads 144