Search results for: project classification
5639 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 4105638 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1495637 Changes in Financial Reporting of Polish Entities Resulting from the Implementation of Directive 34/EU and Evaluation of the Changes by Accountants
Authors: Piotr Prewysz-Kwinto, Grazyna Voss
Abstract:
In June 2013, the European Parliament and the Council adopted a directive on financial reporting (Directive 2013/34/EU). The main objective was to simplify the principles of the preparation of financial statements, including the principles of the presentation and disclosures of financial information by adapting reporting burdens to the type and size of an undertaking. Therefore, the Directive introduced a classification of all undertakings into five groups, i.e. micro, small, medium-sized, large and public-interest entities, and defined in detail the classification criteria. The principles of the preparation of financial statements and the presentation of financial information as well as applicable simplifications were defined for each group. The EU Member States had to implement the provisions of Directive 34 relating to accounting and financial reporting into domestic norms until January 1, 2016. In Poland, the provisions of Directive 34 were implemented into domestic accounting norms specified in the Polish Accounting Act on a gradual basis. On July 11, 2014, the Polish Parliament adopted an amendment to the Act, introducing the Directive's solutions for micro-undertakings and on July 23, 2015, for the remaining undertakings. The aim of this paper is to present Polish solutions relating to financial reporting after the implementation of Directive 34 and the results of the survey conducted among accountants regarding the evaluation of the implemented simplifications for micro and small undertakings.Keywords: accounting standards, financial reporting, financial statement, simplification
Procedia PDF Downloads 2785636 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 3505635 Governance of Energy Transitions in Developing States
Authors: Robert Lindner
Abstract:
In recent years a multitude of international efforts, including the United Nations’ aspirational 2030 Agenda for Sustainable Development, provided a new momentum to facilitate energy access and rural electrification projects to combat energy poverty in developing states in Asia. Rural electrification projects promise to facilitate other sustainable development aims, such as the empowerment of local communities through the creation of economic opportunities or increased disaster resilience. This study applies a multi-governance research framework to study the cases of the ongoing energy system transition in Myanmar and Cambodia. It explores what impact the international aid community, especially multilateral development banks and international development agencies, has on the governance of the transitions and how diverging aid donor interest shape policy making and project planning. The study is based on policy analysis and expert interviews, as well as extensive field research. It critically examines the current development trajectories and the strategies of the stakeholders involved. It concludes that institutional and technological competition between donors, as well as a lack of transparency and inclusion in the project planning and implementation phases, contributes to insufficient coordination in national energy policy making and project implementation at the local level. The study further discusses possible alternative approaches that might help to promote the spread of sustainable energy technologies.Keywords: energy governance, developing countries, multi-level governance, energy transitions
Procedia PDF Downloads 1125634 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 1265633 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass
Authors: Raheleh Farzanmanesh, Christopher J. Weston
Abstract:
Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2
Procedia PDF Downloads 725632 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran
Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia
Abstract:
Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.Keywords: ERP, BSC, ERP project evaluation, IT projects
Procedia PDF Downloads 3225631 Development of Liquefaction-Induced Ground Damage Maps for the Wairau Plains, New Zealand
Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense
Abstract:
The Wairau Plains are located in the north-east of the South Island of New Zealand in the region of Marlborough. The region is cut by many active crustal faults such as the Wairau, Awatere, and Clarence faults, which give rise to frequent seismic events. This paper presents the preliminary results of the overall project in which liquefaction-induced ground damage maps are developed in the Wairau Plains based on the Ministry of Business, Innovation and Employment NZ guidance. A suite of maps has been developed in relation to the level of details that was available to inform the liquefaction hazard mapping. Maps at the coarsest level of detail make use of regional geologic information, applying semi-quantitative criteria based on geological age, design peak ground accelerations and depth to the water table. The next level of detail incorporates higher resolution surface geomorphologic characteristics to better delineate potentially liquefiable and non-liquefiable deposits across the region. The most detailed assessment utilised CPT sounding data to develop ground damage response curves for areas across the region and provide a finer level of categorisation of liquefaction vulnerability. Linking these with design level earthquakes defined through NZGS guidelines will enable detailed classification to be carried out at CPT investigation locations, from very low through to high liquefaction vulnerability. To update classifications to these detailed levels, CPT investigations in geomorphic regions are grouped together to provide an indication of the representative performance of the soils in these areas making use of the geomorphic mapping outlined above.Keywords: hazard, liquefaction, mapping, seismicity
Procedia PDF Downloads 1395630 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 1955629 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3285628 Installation of an Inflatable Bladder and Sill Walls for Riverbank Erosion Protection and Improved Water Intake Zone Smokey Hill River – Salina, Kansas
Authors: Jeffrey A. Humenik
Abstract:
Environmental, Limited Liability Corporation (EMR) provided civil construction services to the U.S. Army Corps of Engineers, Kansas City District, for the placement of a protective riprap blanket on the west bank of the Smoky Hill River, construction of 2 shore abutments and the construction of a 140 foot long sill wall spanning the Smoky Hill River in Salina, Kansas. The purpose of the project was to protect the riverbank from erosion and hold back water to a specified elevation, creating a pool to ensure adequate water intake for the municipal water supply. Geotextile matting and riprap were installed for streambank erosion protection. An inflatable bladder (AquaDam®) was designed to the specific river dimension and installed to divert the river and allow for dewatering during the construction of the sill walls and cofferdam. AquaDam® consists of water filled polyethylene tubes to create aqua barriers and divert water flow or prevent flooding. A challenge of the project was the fact that 100% of the sill wall was constructed within an active river channel. The threat of flooding of the work area, damage to the aqua dam by debris, and potential difficulty of water removal presented a unique set of challenges to the construction team. Upon completion of the West Sill Wall, floating debris punctured the AquaDam®. The manufacturing and delivery of a new AquaDam® would delay project completion by at least 6 weeks. To keep the project ahead of schedule, the decision was made to construct an earthen cofferdam reinforced with rip rap for the construction of the East Abutment and East Sill Wall section. During construction of the west sill wall section, a deep scour hole was encountered in the wall alignment that prevented EMR from using the natural rock formation as a concrete form for the lower section of the sill wall. A formwork system was constructed, that allowed the west sill wall section to be placed in two horizontal lifts of concrete poured on separate occasions. The first sectional lift was poured to fill in the scour hole and act as a footing for the second sectional lift. Concrete wall forms were set on the first lift and anchored to the surrounding riverbed in a manner that the second lift was poured in a similar fashion as a basement wall. EMR’s timely decision to keep the project moving toward completion in the face of changing conditions enabled project completion two (2) months ahead of schedule. The use of inflatable bladders is an effective and cost-efficient technology to divert river flow during construction. However, a secondary plan should be part of project design in the event debris transported by river punctures or damages the bladders.Keywords: abutment, AquaDam®, riverbed, scour
Procedia PDF Downloads 1545627 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project
Authors: Kanagarajah Ravishankar
Abstract:
This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design
Procedia PDF Downloads 1385626 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis
Authors: Esra Polat
Abstract:
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis
Procedia PDF Downloads 2805625 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 1325624 Conflict around the Brownfield Reconversion of the Canadian Forces Base Rockcliffe in Ottawa: A Clash of Ambitions and Visions in Canadian Urban Sustainability
Authors: Kenza Benali
Abstract:
Over the past decade, a number of remarkable projects in urban brownfield reconversion emerged across Canada, including the reconversion of former military bases owned by the Canada Lands Company (CLC) into sustainable communities. However, unlike other developments, the regeneration project of the former Canadian Forces Base Rockcliffe in Ottawa – which was announced as one of the most ambitious Smart growth projects in Canada – faced serious obstacles in terms of social acceptance by the local community, particularly urban minorities composed of Francophones, Indigenous and vulnerable groups who live near or on the Base. This turn of events led to the project being postponed and even reconsidered. Through an analysis of its press coverage, this research aims to understand the causes of this urban conflict which lasted for nearly ten years. The findings reveal that the conflict is not limited to the “standard” issues common to most conflicts related to urban mega-projects in the world – e.g., proximity issues (threads to the quality of the surrounding neighbourhoods; noise, traffic, pollution, New-build gentrification) often associated with NIMBY phenomena. In this case, the local actors questioned the purpose of the project (for whom and for what types of uses is it conceived?), its local implementation (to what extent are the local history and existing environment taken into account?), and the degree of implication of the local population in the decision-making process (with whom is the project built?). Moreover, the interests of the local actors have “jumped scales” and transcend the micro-territorial level of their daily life to take on a national and even international dimension. They defined an alternative view of how this project, considered strategic by his location in the nation’s capital, should be a reference as well as an international showcase of Canadian ambition and achievement in terms of urban sustainability. This vision promoted, actually, a territorial and national identity approach - in which some cultural values are highly significant (respect of social justice, inclusivity, ethnical diversity, cultural heritage, etc.)- as a counterweight to planners’ vision which is criticized as a normative/ universalist logic that ignore the territorial peculiarities.Keywords: smart growth, brownfield reconversion, sustainable neighborhoods, Canada Lands Company, Canadian Forces Base Rockcliffe, urban conflicts
Procedia PDF Downloads 3825623 The Urbanistic Initiative of Architecture Students to Intensify the Socio-Economic and Spatial Development of Small Settlements in Tatarstan
Authors: Karina Rashidovna Nabiullina
Abstract:
In 2016, the ‘Beautiful Country’ innovative project was implemented in the Republic of Tatarstan (Russia). This project started at the initiative of architecture students majoring in city planning during their summer internship. As a part of the internship, the students had to study the layout and the lifestyle of Tatarstan towns. All the projects were presented to the Ministry of Construction of Tatarstan, which allowed the settlement authorities to receive the government funding for their implementation. This initiative, from the public discussion of the projects to their implementation, was welcomed by the local communities, evoked local patriotism, created new jobs as a part of the projects' implementation, and improved the architectural environment of the settlements. The projects initiated by the students became the ‘Big Projects’ for these small settlements.Keywords: adapted graphic language, complex territorial development, identity of local resources, overcoming stagnation, participation
Procedia PDF Downloads 3335622 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level
Authors: Ahmad Rouhani
Abstract:
Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.Keywords: feasibility, hybrid energy system, Iran, renewable energy
Procedia PDF Downloads 4855621 Value Generation of Construction and Demolition Waste Originated in the Building Rehabilitation to Improve Energy Efficiency; From Waste to Resources
Authors: Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Paola Villoria Saez, Carmen Viñas Arrebola
Abstract:
The lack of treatment of the waste from construction and demolition waste (CDW) is a problem that must be solved immediately. It is estimated that in the world not to use CDW generates an increase in the use of new materials close to 20% of the total value of the materials used. The problem is even greater in case these wastes are considered hazardous because the final deposition of them may also generate significant contamination. Therefore, the possibility of including CDW in the manufacturing of building materials, represents an interesting alternative to ensure their use and to reduce their possible risk. In this context and in the last years, many researches are being carried out in order to analyze the viability of using CDW as a substitute for the traditional raw material of high environmental impact. Even though it is true, much remains to be done, because these works generally characterize materials but not specific applications that allow the agents of the construction to have the guarantees required by the projects. Therefore, it is necessary the involvement of all the actors included in the life cycle of these new construction materials, and also to promote its use for, for example, definition of standards, tax advantages or market intervention is necessary. This paper presents the main findings reached in "Waste to resources (W2R)" project since it began in October 2014. The main goal of the project is to develop new materials, elements and construction systems, manufactured from CDW, to be used in improving the energy efficiency of buildings. Other objectives of the project are: to quantify the CDW generated in the energy rehabilitation works, specifically wastes from the building envelope; and to study the traceability of CDW generated and promote CDW reuse and recycle in order to get close to the life cycle of buildings, generating zero waste and reducing the ecological footprint of the construction sector. This paper determines the most important aspects to consider during the design of new constructive solutions, which improve the energy efficiency of buildings and what materials made with CDW would be the most suitable for that. Also, a survey to select best practices for reducing "close to zero waste" in refurbishment was done. Finally, several pilot rehabilitation works conform the parameters analyzed in the project were selected, in order to apply the results and thus compare the theoretical with reality. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under "Waste 2 Resources" Project (BIA2013-43061-R).Keywords: building waste, construction and demolition waste, recycling, resources
Procedia PDF Downloads 2505620 Study on the Factors that Causes the Malaysian Oil and Gas Equipment (OGSE) Companies being under-Developing
Authors: Low Khee Wai
Abstract:
Lossing of opportunity by Malaysian Oil and Gas Services Equipment (OGSE) companies can be a major issue in developing and sustain Malaysia’s own Oil & Gas Industry. Despite the rapid growth of Oil & Gas industry in Malaysia for the past 40 years, Malaysia still not developing sufficient OGSE companies in order to support its own Oil & Gas Industry. In examining the scenario, this study aims to identify the factors causing the under-developing of OGSE companies in Malaysia. Conceptual Review method were used to analyse the factors that cause the under-development of Malaysia OGSE. The 4 factors identified were Time, Cost, Human Resource and Stakeholder Management. This survey explained the phenomena and the challenge of the industry and translated into the factors that cause the under-developing of OGSE companies in Malaysia. Finally, it should bring awareness to the government, authorities, and stakeholder in order to improve the ecology of Oil & Gas Industry in Malaysia.Keywords: oil & gas in Malaysia, Malaysia local oil & gas services equipment (OGSE), oil & gas project management, project performance
Procedia PDF Downloads 1325619 IMPERTIO: An Efficient Communication Interface for Cerebral Palsy Patients
Authors: M. Zaïgouche, A. Kouvahe, F. Stefanelli
Abstract:
IMPERTIO is a high technology based project aiming at offering efficient assistance help in communication for persons affected by Cerebral Palsy. The systems currently available are hardly used by these patients who are not satisfied by ergonomics and response time. The project rests upon the concept that, opposite to usual master-slave communication giving power to the entity with larger range of possibilities, providing conversely the mastery to the entity with smaller range of possibilities will allow a better understanding ground for both parties. Entirely customizable, the application developed from this idea gives full freedom to the user. Through pictograms (one button linked to a word or a sentence) and adapted keyboard, noticeable improvements are brought to the response time and ease to use ergonomics.Keywords: cerebral palsy, master-slave relation, communication interface, virtual keyboard, word construction algorithm
Procedia PDF Downloads 4005618 Fast Track to the Physical Internet: A Cross-Industry Project from Upper Austria
Authors: Laura Simmer, Maria Kalt, Oliver Schauer
Abstract:
Freight transport is growing fast, but many vehicles are empty or just partially loaded. The vision and concepts of the Physical Internet (PI) proposes to eliminate these inefficiencies. Aiming for a radical sustainability improvement, the PI – inspired by the Digital Internet – is a hyperconnected global logistic system, enabling seamless asset sharing and flow consolidation. The implementation of a PI in its full expression will be a huge challenge: the industry needs innovation and implementation support including change management approaches, awareness creation and good practices diffusion, legislative actions to remove antitrust and international commerce barriers, standardization and public incentives policies. In order to take a step closer to this future the project ‘Atropine - Fast Track to the Physical Internet’ funded under the Strategic Economic and Research Program ‘Innovative Upper Austria 2020’ was set up. The two-year research project unites several research partners in this field, but also industrial partners and logistics service providers. With Atropine, the consortium wants to actively shape the mobility landscape in Upper Austria and make an innovative contribution to an energy-efficient, environmentally sound and sustainable development in the transport area. This paper should, on the one hand, clarify the questions what the project Atropine is about and, on the other hand, how a proof of concept will be reached. Awareness building plays an important role in the project as the PI requires a reorganization of the supply chain and the design of completely new forms of inter-company co-operation. New business models have to be developed and should be verified by simulation. After the simulation process one of these business models will be chosen and tested in real life with the partner companies. The developed results - simulation model and demonstrator - are used to determine how the concept of the PI can be applied in Upper Austria. Atropine shall pave the way for a full-scale development of the PI vision in the next few decades and provide the basis for pushing the industry toward a new level of co-operation with more shared resources and increased standardization.Keywords: Atropine, inter-company co-operation, Physical Internet, shared resources, sustainable logistics
Procedia PDF Downloads 2235617 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 935616 Quantum Inspired Security on a Mobile Phone
Authors: Yu Qin, Wanjiaman Li
Abstract:
The widespread use of mobile electronic devices increases the complexities of mobile security. This thesis aims to provide a secure communication environment for smartphone users. Some research proves that the one-time pad is one of the securest encryption methods, and that the key distribution problem can be solved by using the QKD (quantum key distribution). The objective of this project is to design an Android APP (application) to exchange several random keys between mobile phones. Inspired by QKD, the developed APP uses the quick response (QR) code as a carrier to dispatch large amounts of one-time keys. After evaluating the performance of APP, it allows the mobile phone to capture and decode 1800 bytes of random data in 600ms. The continuous scanning mode of APP is designed to improve the overall transmission performance and user experience, and the maximum transmission rate of this mode is around 2200 bytes/s. The omnidirectional readability and error correction capability of QR code gives it a better real-life application, and the features of adequate storage capacity and quick response optimize overall transmission efficiency. The security of this APP is guaranteed since QR code is exchanged face-to-face, eliminating the risk of being eavesdropped. Also, the id of QR code is the only message that would be transmitted through the whole communication. The experimental results show this project can achieve superior transmission performance, and the correlation between the transmission rate of the system and several parameters, such as the QR code size, has been analyzed. In addition, some existing technologies and the main findings in the context of the project are summarized and critically compared in detail.Keywords: one-time pad, QKD (quantum key distribution), QR code, application
Procedia PDF Downloads 1465615 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 1275614 Classification of Emotions in Emergency Call Center Conversations
Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko
Abstract:
The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning
Procedia PDF Downloads 3985613 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman
Authors: Asil Zureigat, Ayat Odat
Abstract:
Analyzing the old and bringing in the new is an ever ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman the paper seeks to make the exception, the rule by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.Keywords: architectural city identity, cladding materials, façade architecture, image of the city
Procedia PDF Downloads 2255612 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia
Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas
Abstract:
The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.Keywords: time series, global solar irradiance, imputed data, energy complementarity
Procedia PDF Downloads 715611 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 1315610 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star
Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu
Abstract:
The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership
Procedia PDF Downloads 239