Search results for: multi-phase induction machine
2206 Water Efficiency: Greywater Recycling
Authors: Melissa Lubitz
Abstract:
Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.Keywords: greywater, wastewater treatment, water conservation, circular water society
Procedia PDF Downloads 622205 Power Quality Audit Using Fluke Analyzer
Authors: N. Ravikumar, S. Krishnan, B. Yokeshkumar
Abstract:
In present days, the power quality issues are increases due to non-linear loads like fridge, AC, washing machines, induction motor, etc. This power quality issues will affects the output voltages, output current, and output power of the total performance of the generator. This paper explains how to test the generator using the Fluke 435 II series power quality analyser. This Fluke 435 II series power quality analyser is used to measure the voltage, current, power, energy, total harmonic distortion (THD), current harmonics, voltage harmonics, power factor, and frequency. The Fluke 435 II series power quality analyser have several advantages. They are i) it will records output in analog and digital format. ii) the fluke analyzer will records at every 0.25 sec. iii) it will also measure all the electrical parameter at a time.Keywords: THD, harmonics, power quality, TNEB, Fluke 435
Procedia PDF Downloads 1772204 Efficient Method for Inducing Embryos from Isolated Microspores of Durum Wheat
Authors: Zelikha Labbani
Abstract:
Durum wheat represents an attractive species to study androgenesis via isolated microspore culture in order to increase the efficiency of androgenic yield in recalcitrant species such as in induction embryogenesis. We describe here an efficient method for inducing embryos from isolated microspores of durum wheat. It is shown that this method, associated with cold alone or cold plus mannitol pretreatment, or mannitol alone of the spikes kept within their sheath leaves during different times, has significant positive effects on embryo production. The aim of this study was, therefore, to test the effect of mannitol 0,3M and cold pretreatment on the quality and quantity of embryos produced from microspore culture from wheat cultivars.Keywords: in vitro embryogenesis, isolated microspores culture, durum wheat, pretreatments, mannitol 0.3m, cold pretreatment
Procedia PDF Downloads 572203 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 912202 Cloning and Characterization of Uridine-5’-Diphosphate -Glucose Pyrophosphorylases from Lactobacillus Kefiranofaciens and Rhodococcus Wratislaviensis
Authors: Mesfin Angaw Tesfay
Abstract:
Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg respectively. Currently, their kinetic properties are under investigation.Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, Glycosylation
Procedia PDF Downloads 202201 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 1782200 Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry
Authors: O. Moussous, T. Medjadj
Abstract:
The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom.Keywords: Fricke dosimeter, depth–dose profiles, peak scatter factors, DSD
Procedia PDF Downloads 2522199 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 512198 Customer Preference in the Textile Market: Fabric-Based Analysis
Authors: Francisca Margarita Ocran
Abstract:
Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.Keywords: consumer behavior, data mining, lingerie, machine learning, preference
Procedia PDF Downloads 902197 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 1462196 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery
Authors: Jay Ananth
Abstract:
The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development
Procedia PDF Downloads 1112195 Numerical Investigation of Pressure Drop in Core Annular Horizontal Pipe Flow
Authors: John Abish, Bibin John
Abstract:
Liquid-liquid flow in horizontal pipe is investigated in order to reveal the flow patterns arising from the co-existed flow of oil and water. The main focus of the study is to identify the feasibility of reducing the pumping power requirements of petroleum transportation lines by having an annular flow of water around the thick oil core. This idea makes oil transportation cheaper and easier. The present study uses computational fluid dynamics techniques to model oil-water flows with liquids of similar density and varying viscosity. The simulation of the flow is conducted using commercial package Ansys Fluent. Flow domain modeling and grid generation accomplished through ICEM CFD. The horizontal pipe is modeled with two different inlets and meshed with O-Grid mesh. The standard k-ε turbulence scheme along with the volume of fluid (VOF) multiphase modeling method is used to simulate the oil-water flow. Transient flow simulations carried out for a total period of 30s showed significant reduction in pressure drop while employing core annular flow concept. This study also reveals the effect of viscosity ratio, mass flow rates of individual fluids and ration of superficial velocities on the pressure drop across the pipe length. Contours of velocity and volume fractions are employed along with pressure predictions to assess the effectiveness of this proposed concept quantitatively as well as qualitatively. The outcome of the present study is found to be very relevant for the petrochemical industries.Keywords: computational fluid dynamics, core-annular flows, frictional flow resistance, oil transportation, pressure drop
Procedia PDF Downloads 4062194 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC
Authors: Salman Hameed
Abstract:
In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor
Procedia PDF Downloads 4232193 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1182192 Toxicity of the Chlorfenapyr: Growth Inhibition and Induction of Oxidative Stress on a Freshwater Protozoan, Paramecium Sp.
Authors: Houneïda Benbouzid, Houria Berrebbah, Mohammed-Réda Djebar
Abstract:
The toxicological impacts of the increasing number of synthetic compounds present in the aquatic environment are assessed predominantly in laboratory studies where test organisms are exposed to a range of concentrations of single compounds. The bio-indicator Paramecium sp., characterized by a short life cycle, rapid multiplication and normal behavior that may be affected by the presence of pollutants. We therefore investigated the inhibitory effect of a newly synthesized acaricide: the chlorfenapyr tested at concentrations of 250, 300, and 350 µM on a pure culture of Paramecium sp. during 6 day. Paramecia treated with different concentrations of Chlorfenapyr illustrate strong inhibition of cell growth from the second day of treatment. Low levels of glutathione, increased glutathione S-transferase and the decrease in respiratory metabolism, recorded in the presence of different concentrations of Chlorfenapyr, involve the activation of detoxification system.Keywords: Paramecium sp., chlorfenapyr, oxidative enzymes, detoxification
Procedia PDF Downloads 3672191 Virtual Test Model for Qualification of Knee Prosthesis
Authors: K. Zehouani, I. Oldal
Abstract:
Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS
Procedia PDF Downloads 1442190 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 342189 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 722188 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1072187 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 2272186 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples
Authors: Saifullah Karimullah
Abstract:
Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine
Procedia PDF Downloads 1032185 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1342184 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 2882183 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines
Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi
Abstract:
Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer
Procedia PDF Downloads 3482182 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 702181 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 4922180 Microfiber Release During Laundry Under Different Rinsing Parameters
Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan
Abstract:
Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine
Procedia PDF Downloads 982179 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro-scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the microchannels and to calculate the surface finish and material removal rate of microchannels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of a pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: microchannels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), surface finish
Procedia PDF Downloads 4992178 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2102177 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 23