Search results for: finite element analysis
28402 Influence of Different Asymmetric Rolling Processes on Shear Strain
Authors: Alexander Pesin, Denis Pustovoytov, Mikhail Sverdlik
Abstract:
Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.Keywords: asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet
Procedia PDF Downloads 26128401 Acausal and Causal Model Construction with FEM Approach Using Modelica
Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi
Abstract:
Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.Keywords: FEM, a causal model, modelica, horizontal and vertical sorting
Procedia PDF Downloads 30728400 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model
Authors: Swarn Singh, Suruchi Singh
Abstract:
In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability
Procedia PDF Downloads 46928399 Optimum Structural Wall Distribution in Reinforced Concrete Buildings Subjected to Earthquake Excitations
Authors: Nesreddine Djafar Henni, Akram Khelaifia, Salah Guettala, Rachid Chebili
Abstract:
Reinforced concrete shear walls and vertical plate-like elements play a pivotal role in efficiently managing a building's response to seismic forces. This study investigates how the performance of reinforced concrete buildings equipped with shear walls featuring different shear wall-to-frame stiffness ratios aligns with the requirements stipulated in the Algerian seismic code RPA99v2003, particularly in high-seismicity regions. Seven distinct 3D finite element models are developed and evaluated through nonlinear static analysis. Engineering Demand Parameters (EDPs) such as lateral displacement, inter-story drift ratio, shear force, and bending moment along the building height are analyzed. The findings reveal two predominant categories of induced responses: force-based and displacement-based EDPs. Furthermore, as the shear wall-to-frame ratio increases, there is a concurrent increase in force-based EDPs and a decrease in displacement-based ones. Examining the distribution of shear walls from both force and displacement perspectives, model G with the highest stiffness ratio, concentrating stiffness at the building's center, intensifies induced forces. This configuration necessitates additional reinforcements, leading to a conservative design approach. Conversely, model C, with the lowest stiffness ratio, distributes stiffness towards the periphery, resulting in minimized induced shear forces and bending moments, representing an optimal scenario with maximal performance and minimal strength requirements.Keywords: dual RC buildings, RC shear walls, modeling, static nonlinear pushover analysis, optimization, seismic performance
Procedia PDF Downloads 5528398 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System
Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri
Abstract:
Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse
Procedia PDF Downloads 45628397 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia
Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota
Abstract:
The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species
Procedia PDF Downloads 34728396 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis
Procedia PDF Downloads 35128395 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency
Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim
Abstract:
In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe
Procedia PDF Downloads 35528394 Orbit Determination from Two Position Vectors Using Finite Difference Method
Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.
Abstract:
An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.Keywords: finite difference method, grid generation, NavIC system, orbit perturbation
Procedia PDF Downloads 8228393 Numerical Study on the Cavity-Induced Piping Failure of Embankment
Authors: H. J. Kim, G. C. Park, K. C. Kim, J. H. Shin
Abstract:
Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed.Keywords: cavity, hydraulic gradient, levee, piping
Procedia PDF Downloads 51828392 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions
Authors: Carlos H. Cuadra
Abstract:
Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.Keywords: historical building, finite element method, masonry structure, seismic isolation, wooden structure
Procedia PDF Downloads 15328391 Cycle Number Estimation Method on Fatigue Crack Initiation Using Voronoi Tessellation and the Tanaka Mura Model
Authors: Mohammad Ridzwan Bin Abd Rahim, Siegfried Schmauder, Yupiter HP Manurung, Peter Binkele, Meor Iqram B. Meor Ahmad, Kiarash Dogahe
Abstract:
This paper deals with the short crack initiation of the material P91 under cyclic loading at two different temperatures, concluded with the estimation of the short crack initiation Wöhler (S/N) curve. An artificial but representative model microstructure was generated using Voronoi tessellation and the Finite Element Method, and the non-uniform stress distribution was calculated accordingly afterward. The number of cycles needed for crack initiation is estimated on the basis of the stress distribution in the model by applying the physically-based Tanaka-Mura model. Initial results show that the number of cycles to generate crack initiation is strongly correlated with temperature.Keywords: short crack initiation, P91, Wöhler curve, Voronoi tessellation, Tanaka-Mura model
Procedia PDF Downloads 10028390 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam
Procedia PDF Downloads 36628389 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.Keywords: blast phenomenon, experimental methods, material models, numerical methods
Procedia PDF Downloads 15628388 Analytic Hierarchy Process
Authors: Hadia Rafi
Abstract:
To make any decision in any work/task/project it involves many factors that needed to be looked. The analytic Hierarchy process (AHP) is based on the judgments of experts to derive the required results this technique measures the intangibles and then by the help of judgment and software analysis the comparisons are made which shows how much a certain element/unit leads another. AHP includes how an inconsistent judgment should be made consistent and how the judgment should be improved when possible. The Priority scales are obtained by multiplying them with the priority of their parent node and after that they are added.Keywords: AHP, priority scales, parent node, software analysis
Procedia PDF Downloads 40528387 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation
Procedia PDF Downloads 43128386 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)
Procedia PDF Downloads 12828385 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing
Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe
Procedia PDF Downloads 30428384 Faithful Extension of Constant Height and Constant Width between Finite Posets
Authors: Walied Hazim Sharif
Abstract:
The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems.Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive
Procedia PDF Downloads 25828383 Behaviour of an RC Circuit near Extreme Point
Authors: Tribhuvan N. Soorya
Abstract:
Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.Keywords: charging, discharging, RC Circuit, capacitor
Procedia PDF Downloads 44128382 Topology Optimization of Structures with Web-Openings
Authors: D. K. Lee, S. M. Shin, J. H. Lee
Abstract:
Topology optimization technique utilizes constant element densities as design parameters. Finally, optimal distribution contours of the material densities between voids (0) and solids (1) in design domain represent the determination of topology. It means that regions with element density values become occupied by solids in design domain, while there are only void phases in regions where no density values exist. Therefore the void regions of topology optimization results provide design information to decide appropriate depositions of web-opening in structure. Contrary to the basic objective of the topology optimization technique which is to obtain optimal topology of structures, this present study proposes a new idea that topology optimization results can be also utilized for decision of proper web-opening’s position. Numerical examples of linear elastostatic structures demonstrate efficiency of methodological design processes using topology optimization in order to determinate the proper deposition of web-openings.Keywords: topology optimization, web-opening, structure, element density, material
Procedia PDF Downloads 47028381 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression
Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han
Abstract:
For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression
Procedia PDF Downloads 28728380 Spatial Element Importance and Its Relation to Characters’ Emotions and Self Awareness in Michela Murgia’s Collection of Short Stories Tre Ciotole. Rituali per Un Anno DI Crisi
Authors: Nikica Mihaljević
Abstract:
Published in 2023, "Tre ciotole. Rituali per un anno di crisi" is a collection of short stories completely disconnected from one another in regard to topics and the representation of characters. However, these short stories complete and somehow continue each other in a particular way. The book happens to be Murgia's last book, as the author died a few months later after the book's publication and it appears as a kind of summary of all her previous literary works. Namely, in her previous publications, Murgia already stressed certain characters' particularities, such as solitude and alienation from others, which are at the center of attention in this literary work, too. What all the stories present in "Tre ciotole" have in common is the dealing with characters' identity and self-awareness through the challenges they confront and the way the characters live their emotions in relation to the surrounding space. Although the challenges seem similar, the spatial element around the characters is different, but it confirms each time that characters' emotions, and, consequently, their self-awareness, can be formed and built only through their connection and relation to the surrounding space. In that way, the reader creates an imaginary network of complex relations among characters in all the short stories, which gives him/her the opportunity to search for a way to break out of the usual patterns that tend to be repeated while characters focus on building self-awareness. The aim of the paper is to determine and analyze the role of spatial elements in the creation of characters' emotions and in the process of self-awareness. As the spatial element changes or gets transformed and/or substituted, in the same way, we notice the arise of the unconscious desire for self-harm in the characters, which damages their self-awareness. Namely, the characters face a crisis that they cannot control by inventing other types of crises that can be controlled. That happens to be their way of acting in order to find the way out of the identity crisis. Consequently, we expect that the results of the analysis point out the similarities in the short stories in characters' depiction as well as to show the extent to which the characters' identities depend on the surrounding space in each short story. In this way, the results will highlight the importance of spatial elements in characters' identity formation in Michela Murgia's short stories and also summarize the importance of the whole Murgia's literary opus.Keywords: Italian literature, short stories, environment, spatial element, emotions, characters
Procedia PDF Downloads 5028379 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault
Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari
Abstract:
Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.Keywords: pipe lines , earthquake , fault , soil-fault interaction
Procedia PDF Downloads 45028378 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors
Authors: Sudip Sudhir Godbole
Abstract:
In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method
Procedia PDF Downloads 53628377 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material
Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe
Abstract:
In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material
Procedia PDF Downloads 7428376 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 29328375 2D RF ICP Torch Modelling with Fluid Plasma
Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy
Abstract:
A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation
Procedia PDF Downloads 43128374 Investigation of Static Stability of Soil Slopes Using Numerical Modeling
Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti
Abstract:
Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method
Procedia PDF Downloads 16228373 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method
Authors: Karuna Tuchinda, Sasithon Bland
Abstract:
This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction
Procedia PDF Downloads 373