Search results for: powder processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4541

Search results for: powder processing

3131 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil

Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman

Abstract:

The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.

Keywords: solid waste, waste of electrical and electronic equipment, waste management, institutional solid waste generation

Procedia PDF Downloads 260
3130 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 55
3129 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
3128 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations

Authors: Ram Mohan, Richard Haney, Ajit Kelkar

Abstract:

Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.

Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance

Procedia PDF Downloads 363
3127 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese

Authors: Lila Boulekbache-Makhlouf, Brahmi Fatiha

Abstract:

This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols (TPP) using ultrasound are optimized. Then, the contents of PPT, flavonoids, and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physico-chemical, microbiological, and sensory analyzes of the cheese produced. The maximum PPT value of 70.44 mg GAE/g DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min, and a temperature of 10°C. Meanwhile, the maximum TPP content of potato peels of 45.03 ± 4.16 mg GAE/g DM was obtained using an ethanol/water mixture (40%, v/v), a time of 30 min, and a temperature of 60°C and the flavonoid contents were 13.99 and 7.52 QE/g DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with IC50s of 125.42 ± 2.78 μg/mL for DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physico-chemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analyzes, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.

Keywords: shallots leaves, potato peels, ultrasound extraction, phenolic, cheese

Procedia PDF Downloads 184
3126 Anti-Obesity Effect of Cordyceps militaris Fermented Black Rice

Authors: Chih-Hung Liang, Jung-Jung Chen, Shen-Shih Chiang

Abstract:

Obesity is defined as abnormal or excessive fat accumulation that presents a risk to health, which are major risk factors for a number of chronic diseases, including diabetes, cardiovascular diseases and cancer. Cordyceps militaris (CM) is a well-known traditional medicine in Asian countries and a rich source of biologically active components. Black rice (Oryza sativa L.) is a special cultivar of rice that contains rich anthocyanins and regarded as a health-promoting food in China and other Eastern. The aim of this study was to investigate the anti-obesity effect of Cordyceps militaris fermented black rice (CB) on HFD-induced BALB/c mice model. The results indicated that administration of low and high dosage of CB powder significantly reduced the body weights (7.38% and 7.78%), body fat ratio (2.37% and 2.78%), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels compared to the HF group (p<0.05). Histopathological analysis showed that the score of fatty liver in HF group (5.0) was significantly higher than CB groups (2.1 and 3.6) (p<0.05). In conclusion, Cordyceps militaris fermented black rice can reduce the body weight via inhibition of the fat accumulation in liver and body and possess the anti-obesity potency.

Keywords: Cordyceps militaris, black rice, obesity, HFD-induced mice

Procedia PDF Downloads 310
3125 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 195
3124 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
3123 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)

Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad

Abstract:

The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.

Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments

Procedia PDF Downloads 95
3122 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
3121 Chemopreventive Potency of Medicinal and Eatable Plant, Gromwell Seed on in Vitro and in Vivo Carcinogenesis Systems

Authors: Harukuni Tokuda, Xu FengHao, Nobutaka Suzuki

Abstract:

As part of an ongoing our projects to investigate the anti-tumor promoring properties (chemopreventive potency) of Gromwell seed, dry powder materials and its active compounds were carried out through useful test systems. Gromwell seed (Coix lachryma-jobi seed) (GS) is a grass crop that has long been used and played a role in traditional medicine as a nourishing food, and for the treatment of various aliments, paticularly cancer. The application of a new screening procedure which utilizes the synergistic effect of short-chain fatty acids and phorbol esters in enable rapid and easy detection of naturally occurring substances(anti-tumor promoters chemo-preventive agents) with inhibition of Epstein-Barr virus(EBV) activation, using human lymphblastoid cells. In addition, we have now extended these investigations to a new tumorigenesis model in which we initiated the tumors with DMBA intiation and promoted with 1.7 nmol of TPA in two-stage mouse skin test and other models. these results provide a basis for further development of these botanical supplements for human cancer chemoprevention and observations seem that this materials more extensively as one of the trials for the purpose of complementary and alternative medicine.

Keywords: chemoprevention, medicinal plant, mouse, carcinogenesis systems

Procedia PDF Downloads 480
3120 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 524
3119 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
3118 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern

Authors: Shutchapol Chopvitayakun

Abstract:

Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.

Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)

Procedia PDF Downloads 315
3117 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets

Authors: Sakshi Tomar, Renu Chadha

Abstract:

Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.

Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis

Procedia PDF Downloads 201
3116 ALEF: An Enhanced Approach to Arabic-English Bilingual Translation

Authors: Abdul Muqsit Abbasi, Ibrahim Chhipa, Asad Anwer, Saad Farooq, Hassan Berry, Sonu Kumar, Sundar Ali, Muhammad Owais Mahmood, Areeb Ur Rehman, Bahram Baloch

Abstract:

Accurate translation between structurally diverse languages, such as Arabic and English, presents a critical challenge in natural language processing due to significant linguistic and cultural differences. This paper investigates the effectiveness of Facebook’s mBART model, fine-tuned specifically for sequence-tosequence (seq2seq) translation tasks between Arabic and English, and enhanced through advanced refinement techniques. Our approach leverages the Alef Dataset, a meticulously curated parallel corpus spanning various domains to capture the linguistic richness, nuances, and contextual accuracy essential for high-quality translation. We further refine the model’s output using advanced language models such as GPT-3.5 and GPT-4, which improve fluency, coherence, and correct grammatical errors in translated texts. The fine-tuned model demonstrates substantial improvements, achieving a BLEU score of 38.97, METEOR score of 58.11, and TER score of 56.33, surpassing widely used systems such as Google Translate. These results underscore the potential of mBART, combined with refinement strategies, to bridge the translation gap between Arabic and English, providing a reliable, context-aware machine translation solution that is robust across diverse linguistic contexts.

Keywords: natural language processing, machine translation, fine-tuning, Arabic-English translation, transformer models, seq2seq translation, translation evaluation metrics, cross-linguistic communication

Procedia PDF Downloads 8
3115 Experimental and Theoretical Approach, Hirshfeld Surface, Reduced Density Gradient, Molecular Docking of a Thiourea Derivative

Authors: Noureddine Benharkat, Abdelkader Chouaih, Nourdine Boukabcha

Abstract:

A thiourea derivative compound was synthesized and subjected to structural analysis using single-crystal X-ray diffraction (XRD). The crystallographic data unveiled its crystallization in the P21/c space group within the monoclinic system. Examination of the dihedral angles indicated a notable non-planar structure. To support and interpret these resulats, density functional theory (DFT) calculations were conducted utilizing the B3LYP functional along with a 6–311 G (d, p) basis set. Additionally, to assess the contribution of intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were employed. Various types of interactions, whether weak intramolecular or intermolecular, within a molecule can significantly impact its stability. The distinctive signature of non-covalent interactions can be detected solely through electron density analysis. The NCI-RDG analysis was employed to investigate both repulsive and attractive van der Waals interactions while also calculating the energies associated with intermolecular interactions and their characteristics. Additionally, a molecular docking study was studied to explain the structure-activity relationship, revealing that the title compound exhibited an affinity energy of -6.8 kcal/mol when docked with B-DNA (1BNA).

Keywords: computational chemistry, density functional theory, crystallography, molecular docking, molecular structure, powder x-ray diffraction, single crystal x-ray diffraction

Procedia PDF Downloads 60
3114 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
3113 Effectiveness of Jackfruit Seed Starch as Coagulant Aid in Landfill Leachate Treatment

Authors: Mohd Suffian Yusoff, Noor Aina Mohamad Zuki, Mohd Faiz Muaz Ahmad Zamri

Abstract:

Currently, aluminium sulphate (alum), ferric chloride and polyaluminium chloride (PAC) are the most common coagulants being used for leachate coagulation-flocculation treatment. However, the impact of these residual’s coagulants have sparked huge concern ceaselessly. Therefore, development of natural coagulant as an alternative coagulant for treatment process has been given full attentions. In this attempt jackfruit seed starch (JSS) was produce by extraction method. The removal efficiency was determined using jar test method. The removal of organic matter and ammonia were compared between JSS used in powder form and diluted form in leachate. The yield of starch from the extraction method was 33.17 % with light brown in colour. The removal of turbidity was the highest at pH 8 for both diluted and powdered JSS with 38% and 8.7% of removal. While for colour removal the diluted JSS showed 18.19% of removal compared to powdered JSS. The diluted JSS also showed the highest removal of suspended solid with 3.5% compared to powdered JSS with 2.8%. Instead of coagulant, JSS as coagulant aid has succeed to reduce the dosage of PAC from 900 mg/L to 528 mg/L by maintaining colour and turbidity removal up to 94% and 92 % respectively. The JSS coagulant also has decreased the negative charge of the leachate nearly to the neutral charge (0.209 mv). The result proved that JSS was more effective to be used as coagulant aid landfill leachate treatment.

Keywords: landfill leachate, natural coagulant, jackfruit seed starch, coagulant

Procedia PDF Downloads 504
3112 Isolation and Selection of Strains Perspective for Sewage Sludge Processing

Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev

Abstract:

One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.

Keywords: sewage sludge, composting, bacteria, enzymatic activity

Procedia PDF Downloads 102
3111 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 129
3110 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying

Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe

Abstract:

Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.

Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying

Procedia PDF Downloads 336
3109 Design and Implementation of Collaborative Editing System Based on Physical Simulation Engine Running State

Authors: Zhang Songning, Guan Zheng, Ci Yan, Ding Gangyi

Abstract:

The application of physical simulation engines in collaborative editing systems has an important background and role. Firstly, physical simulation engines can provide real-world physical simulations, enabling users to interact and collaborate in real time in virtual environments. This provides a more intuitive and immersive experience for collaborative editing systems, allowing users to more accurately perceive and understand various elements and operations in collaborative editing. Secondly, through physical simulation engines, different users can share virtual space and perform real-time collaborative editing within it. This real-time sharing and collaborative editing method helps to synchronize information among team members and improve the efficiency of collaborative work. Through experiments, the average model transmission speed of a single person in the collaborative editing system has increased by 141.91%; the average model processing speed of a single person has increased by 134.2%; the average processing flow rate of a single person has increased by 175.19%; the overall efficiency improvement rate of a single person has increased by 150.43%. With the increase in the number of users, the overall efficiency remains stable, and the physical simulation engine running status collaborative editing system also has horizontal scalability. It is not difficult to see that the design and implementation of a collaborative editing system based on physical simulation engines not only enriches the user experience but also optimizes the effectiveness of team collaboration, providing new possibilities for collaborative work.

Keywords: physics engine, simulation technology, collaborative editing, system design, data transmission

Procedia PDF Downloads 85
3108 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.

Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy

Procedia PDF Downloads 248
3107 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
3106 Serum Anti-Oxidation Enzymes Response to L-Carnitine Supplementation

Authors: Farah Nameni, Hamidreza Poursadra, Maasumeh Nurani Pilehrud

Abstract:

Exercise training induced Inflammation and stress. Antioxidant, for example L- Carnitine has beneficial effects in immune system and increased antioxidant enzymes activity. L- Carnitine protects the tissue against the oxidative side effect and helps the body to protect against stress during and after acute exercise. The aim of this study was to determine the effect of L-Carnitine on the blood enzymes: GPX SOD, CAT and GR response. In this study, 20 basketball players girls participated. Subjects were randomly assigned into two groups; placebo and supplementation. Antioxidadision enzymes (Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase) evaluated. L-Carnitine supplement group orally daily received 3000 mg powder for 14 dys. Then all participates trained basketball exercise acute. Blood samples were drawn vein before and immediately after exercise. Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase were measured, and data was analyzed using repeated measure ANOVA, Bonferroni and t-test. Our results showed: SOD, GPX and GPX (P < 0.05) have a significant increase. These results suggest L-Carnitine supplementation may increase GPX SOD, CAT, and basal anti oxidative capacity. L-Carnitine can modulate the alterations of exercise oxidative damage in girl basketball players.

Keywords: l-carnitine, GPX, SOD, CAT, exercise, GR, anti-oxidant

Procedia PDF Downloads 190
3105 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: idea ontology, innovation management, semantic search, open information extraction

Procedia PDF Downloads 188
3104 Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)

Authors: Amine.Harbia, Hicham. Moutaabbidb, Yann. Le Godecb, Said. Benmokhtara, Mouhammed. Moutaabbida

Abstract:

This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples.

Keywords: double perovskite oxides, magnetic transitions, cation ordering, squid magnetometry

Procedia PDF Downloads 58
3103 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 120
3102 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 161