Search results for: piezoelectric devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2540

Search results for: piezoelectric devices

1130 Android Based Game Intervention for Enhancing the Face Reputation Abilities in Youngsters with Autism Spectrum Disorder

Authors: Anurag Sharma, Arun Khosla, Mamta Khosla, Yogeswara Rao M.

Abstract:

Multimedia devices have received repute in the special desires community. The wide display screen makes it appealing and easy to use, specifically for the ones who've susceptible pleasant motor skill. This paper highlights how an Android-based game named as 'KIDDY' can be used to enhance confront face perceiving capacities in adults with autism and aid the children to develop social interaction capabilities. This game improved concentration and imagination via repetitive movement and visual commentary. Four students with autism, diverse in the historic period, social behavior and communiqué ability had been enrolled in the program and provided an opportunity to recognize new faces thrilling way. This paper offers resultant role based on 'Social Skills Rating System' that shows how cellular generation used as an academician intervention to decorate studying and communiqué among children with autism and additionally proven the tremendous behavior toward cell primarily based game.

Keywords: autism spectrum disorder, screen-based technology, mobile phone-based intercession

Procedia PDF Downloads 157
1129 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suriani Abu Bakar

Abstract:

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications

Keywords: calixarene, multiwalled carbon nanotubes, cadmium, surface potential

Procedia PDF Downloads 465
1128 Analysis of Labor Effectiveness at Green Tea Dry Sorting Workstation for Increasing Tea Factory Competitiveness

Authors: Bayu Anggara, Arita Dewi Nugrahini, Didik Purwadi

Abstract:

Dry sorting workstation needs labor to produce green tea in Gambung Tea Factory. Observation results show that there is labor who are not working at the moment and doing overtime jobs to meet production targets. The measurement of the level of labor effectiveness has never been done before. The purpose of this study is to determine the level of labor effectiveness and provide recommendations for improvement based on the results of the Pareto diagram and Ishikawa diagram. The method used to measure the level of labor effectiveness is Overall Labor Effectiveness (OLE). OLE had three indicators which are availability, performance, and quality. Recommendations are made based on the results of the Pareto diagram and Ishikawa diagram for indicators that do not meet world standards. Based on the results of the study, the OLE value was 68.19%. Recommendations given to improve labor performance are adding mechanics, rescheduling rest periods, providing special training for labor, and giving rewards to labor. Furthermore, the recommendations for improving the quality of labor are procuring water content measuring devices, create material standard policies, and rescheduling rest periods.

Keywords: Ishikawa diagram, labor effectiveness, OLE, Pareto diagram

Procedia PDF Downloads 208
1127 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 445
1126 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 28
1125 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 266
1124 Embodied Empowerment: A Design Framework for Augmenting Human Agency in Assistive Technologies

Authors: Melina Kopke, Jelle Van Dijk

Abstract:

Persons with cognitive disabilities, such as Autism Spectrum Disorder (ASD) are often dependent on some form of professional support. Recent transformations in Dutch healthcare have spurred institutions to apply new, empowering methods and tools to enable their clients to cope (more) independently in daily life. Assistive Technologies (ATs) seem promising as empowering tools. While ATs can, functionally speaking, help people to perform certain activities without human assistance, we hold that, from a design-theoretical perspective, such technologies often fail to empower in a deeper sense. Most technologies serve either to prescribe or to monitor users’ actions, which in some sense objectifies them, rather than strengthening their agency. This paper proposes that theories of embodied interaction could help formulating a design vision in which interactive assistive devices augment, rather than replace, human agency and thereby add to a persons’ empowerment in daily life settings. It aims to close the gap between empowerment theory and the opportunities provided by assistive technologies, by showing how embodiment and empowerment theory can be applied in practice in the design of new, interactive assistive devices. Taking a Research-through-Design approach, we conducted a case study of designing to support independently living people with ASD with structuring daily activities. In three iterations we interlaced design action, active involvement and prototype evaluations with future end-users and healthcare professionals, and theoretical reflection. Our co-design sessions revealed the issue of handling daily activities being multidimensional. Not having the ability to self-manage one’s daily life has immense consequences on one’s self-image, and also has major effects on the relationship with professional caregivers. Over the course of the project relevant theoretical principles of both embodiment and empowerment theory together with user-insights, informed our design decisions. This resulted in a system of wireless light units that users can program as a reminder for tasks, but also to record and reflect on their actions. The iterative process helped to gradually refine and reframe our growing understanding of what it concretely means for a technology to empower a person in daily life. Drawing on the case study insights we propose a set of concrete design principles that together form what we call the embodied empowerment design framework. The framework includes four main principles: Enabling ‘reflection-in-action’; making information ‘publicly available’ in order to enable co-reflection and social coupling; enabling the implementation of shared reflections into an ‘endurable-external feedback loop’ embedded in the persons familiar ’lifeworld’; and nudging situated actions with self-created action-affordances. In essence, the framework aims for the self-development of a suitable routine, or ‘situated practice’, by building on a growing shared insight of what works for the person. The framework, we propose, may serve as a starting point for AT designers to create truly empowering interactive products. In a set of follow-up projects involving the participation of persons with ASD, Intellectual Disabilities, Dementia and Acquired Brain Injury, the framework will be applied, evaluated and further refined.

Keywords: assistive technology, design, embodiment, empowerment

Procedia PDF Downloads 262
1123 Conceptual Design of Low Energy Consumption House in Khartoum, Sudan

Authors: Sawsan M. H. Domi

Abstract:

Approximately 50% of the energy used in buildings, including houses, provide environmental comfortable levels of thermal living. In Khartoum - the city under study- cooling uses the largest portion of energy and the basic idea of Low energy houses is to minimize energy consumption. Therefore, houses are designed to use natural climate strategies to provide thermal comfort. Strategies such as semi-open spaces, shading devices, small high windows and thick walls. The study aims to review these strategies and then, apply them. It aims to change house microclimate by using vegetation, green areas, and other components. A low energy house is being designed s. It will be the first low energy house in Khartoum designed to create a low-cost energy efficient building without any mechanical systems. Three different types of houses in Khartoum are examined and evaluated according to their energy loads which provides the basis for the designed house. The designed house uses passive design strategies to reduce the need for cooling. These results show that the house reduced energy cooling loads by more than 60% compared to the average of the three given types. The design house is economically viable when taking into consideration the energy prices in Sudan.

Keywords: building envelope, climate, energy loads, ventilation

Procedia PDF Downloads 227
1122 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems

Authors: Vladimir Veremey

Abstract:

The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.

Keywords: antenna, antenna arrays, Multiple-Input-Multiple-Output (MIMO), millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas

Procedia PDF Downloads 155
1121 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki

Abstract:

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Keywords: carrier lifetime, impedance, nano-textured, photocurrent

Procedia PDF Downloads 220
1120 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution

Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal

Abstract:

Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.

Keywords: bayesian regularization, neural network, wind shear, accuracy

Procedia PDF Downloads 486
1119 The Effects of pH on the Electrochromism in Nickel Oxide Films

Authors: T. Taşköprü, M. Zor, E. Turan

Abstract:

The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.

Keywords: nickel oxide, XRD, SEM, cyclic voltammetry

Procedia PDF Downloads 285
1118 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 99
1117 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching

Authors: Ly. Benbahouche

Abstract:

Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics. The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments. The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device). Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.

Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt

Procedia PDF Downloads 299
1116 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 79
1115 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Authors: V. S. Klimash, Ye Min Thu

Abstract:

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Keywords: direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model

Procedia PDF Downloads 235
1114 Feature Evaluation and Applications of Various Advanced Conductors with High Conductivity and Low Flash in Overhead Lines

Authors: Atefeh Pourshafie, Homayoun Bakhtiari

Abstract:

In power transmission lines, electricity conductors are main tools to carry electric power. Thus, other devices such as shield wires, insulators, towers, foundations etc. should be designed in a way that the conductors be able to successfully do their task which is appropriate power delivery to the customers. Non-stop increase of energy demand has led to saturated capacity of transmission lines which, in turn, causing line flash to exceed acceptable limits in some points. An approach which may be used to solve this issue is replacement of current conductors with new ones having the capability of withstanding higher heating such that reduced flash would be observed when heating increases. These novel conductors are able to transfer higher currents and operate in higher heating conditions while line flash will remain within standard limits. In this paper, we will attempt to introduce three types of advanced overhead conductors and analyze the replacement of current conductors by new ones technically and economically in transmission lines. In this regard, progressive conductors of transmission lines are introduced such as ACC (Aluminum Conductor Composite Core), AAAC-UHC (Ultra High Conductivity, All Aluminum Alloy Conductors), and G(Z)TACSR-Gap Type.

Keywords: ACC, AAAC-UHC, gap type, transmission lines

Procedia PDF Downloads 253
1113 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth

Authors: Neil Erick Q. Madariaga, Noel B. Linsangan

Abstract:

Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.

Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell

Procedia PDF Downloads 305
1112 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 308
1111 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 368
1110 Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application

Authors: Soraya Hoornam, Zeinab Sanaee

Abstract:

Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries.

Keywords: SiO₂ nanoparticles, lithium-ion battery, pre-lithiation, anode material

Procedia PDF Downloads 97
1109 An Examination of the Effectiveness of iPad-Based Augmentative and Alternative Intervention on Acquisition, Generalization and Maintenance of the Requesting Information Skills of Children with Autism

Authors: Amaal Almigal

Abstract:

Technology has been argued to offer distinct advantages and benefits for teaching children with autism spectrum disorder (ASD) to communicate. One aspect of this technology is augmentative and alternative communication (AAC) systems such as picture exchange or speech generation devices. Whilst there has been significant progress in teaching these children to request their wants and needs with AAC, there remains a need for developing technologies that can really make a difference in teaching them to ask questions. iPad-based AAC can be effective for communication. However, the effectiveness of this type of AAC in teaching children to ask questions needs to be examined. Thus, in order to examine the effectiveness of iPad-based AAC in teaching children with ASD to ask questions, This research will test whether iPad leads to more learning than a traditional approach picture and text cards does. Two groups of children who use AAC will be taught to ask ‘What is it?’ questions. With the first group, low-tech AAC picture and text cards will be used, while an iPad-based AAC application called Proloquo2Go will be used with the second group. Interviews with teachers and parents will be conducted before and after the experiment. The children’s perspectives will also be considered. The initial outcomes of this research indicate that iPad can be an effective tool to help children with autism to ask questions.

Keywords: autism, communication, information, iPad, pictures, requesting

Procedia PDF Downloads 252
1108 Analyzing the Attitudes of Prep-Class Students at Higher Education towards Computer-Based Foreign Language Education

Authors: Sakine Sincer

Abstract:

In today’s world, the borders between countries and globalization are getting faster. It is an undeniable fact that this trend mostly results from the developments and improvements in technology. Technology, which dominates our lives to a great extent, has turned out to be one of the most important resources to be used in building an effective and fruitful educational atmosphere. Nowadays, technology is a significant means of arranging educational activities at all levels of education such as primary, secondary or tertiary education. This study aims at analyzing the attitudes of prep-class students towards computer-based foreign language education. Within the scope of this study, prep-class students at a university in Ankara, Turkey in 2013-2014 Academic Year participated in this study. The participants were asked to fill in 'Computer-Based Educational Attitude Scale.' The data gathered in this study were analyzed by means of using statistical devices such as means, standard deviation, percentage as well as t-test and ANOVA. At the end of the analysis, it was found out that the participants had a highly positive attitude towards computer-based language education.

Keywords: computer-based education, foreign language education, higher education, prep-class

Procedia PDF Downloads 418
1107 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide

Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou

Abstract:

For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.

Keywords: ZnO, characterization, non-linear optical properties, optoelectronics

Procedia PDF Downloads 467
1106 Power System Modeling for Calculations in Frequency and Steady State Domain

Authors: G. Levacic, A. Zupan

Abstract:

Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.

Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E

Procedia PDF Downloads 304
1105 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement

Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla

Abstract:

Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.

Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator

Procedia PDF Downloads 278
1104 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 291
1103 Growth of SWNTs from Alloy Catalyst Nanoparticles

Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru

Abstract:

Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.

Keywords: nanotube, CVD, device, transistor

Procedia PDF Downloads 303
1102 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 480
1101 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 94