Search results for: neural progentor cells
3516 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation
Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida
Abstract:
Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy
Procedia PDF Downloads 3143515 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 3453514 Prevalence of Anemia and Iron Deficiency in Women of Childbearing Age in the North-West of Libya
Authors: Mustafa Ali Abugila, Basma Nuri Kajruba, Hanan Elhadi, Rehab Ramadan Wali
Abstract:
Iron deficiency anemia is characterized by a decrease of Hb (hemoglobin), serum iron, ferritin, and RBC (red blood cells) (shape and size). Also, it is characterized by an increase in total iron binding capacity (TIBC). Red blood cells become microctytic and hypochromic due to a decrease in iron content. This study was conducted in the north west of Libya and included 210 women in childbearing age (18-45 years) who were visiting women clinic. After filling the questionnaire, blood samples were taken and analyzed for hematological and biochemical profiles. Biochemical tests included measurement of serum iron, ferritin, and total iron binding capacity (TIBC). Among the total sample (210 women), there were 87 (41.42%) pregnant and 123 (58.57%) non-pregnant women (includes married and single). Pregnant women (87) were classified according to the gestational age into first, second, and third trimesters. The means of biochemical and hematological parameters in the studied samples were: Hb = 10.37± 2.02 g/dl, RBC = 3.78± 1.037 m/m3, serum iron 61.86± 40.28 µg/dl, and TIBC = 386.01 ± 94.91 µg/dl. In this study, we considered that any women have hemoglobin below 11.5 g/dl is anemic. 89.1%, 69.5%, and 47.8% of pregnant women who belong to third trimester had low (below normal value) Hb, serum iron, and ferritin, i.e. iron deficiency anemia was more common in third trimester among the first and the second trimesters. Third trimester pregnant women also had high TIBC more than first and second trimesters.Keywords: red blood cells, hemoglobin, total iron binding capacity, ferritin
Procedia PDF Downloads 5313513 Sesamol Decreases Melanin Biosynthesis via Melanogenesis-Related Gene Expressions in Melan-a Cells
Authors: Seung-Hwa Baek, In-Jung Nam, Sang-Han Lee
Abstract:
The development of anti-melanogenic agents is important for the prevention of serious esthetic problem like a melasma, freckle, age spots, and chloasma. The aim of this study was to investigate the anti-melanogenic effect of sesamol, an active lignan isolated from sesame seed, by mushroom and cellular tyrosinase assay, melanin content and the analysis of melanogensis-related mRNA expressions in melana cells. Sesamol showed strong inhibitory activity against the mushroom tyrosinase in a dose-dependent manner. Intracellular tyrosinase inhibition activity was also confirmed by zymography. At a concentration of 50 μM, sesamol inhibited melanin production in melan-a cells with no cytoxicity while those of phenylthiourea (PTU) as a positive control were the same condition. Sesamol significantly inhibited the expression of melanogensis-related genes, such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (Dct), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). These findings indicate that sesamol could reduce melanin biosynthesis via the downregulation of tyrosinase activity and melanin production via subsequent gene expression of melanogenesis-related proteins. Together, these results suggest that the sesamol have strong potential in inhibiting melanin biosynthesis, in that the substance may be used as a new skin-whitening agent of cosmetic materials.Keywords: sesamol, sesame seed, melanin biosynthesis, melanogenesis-related gene, skin-whitening agent
Procedia PDF Downloads 3893512 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design
Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier
Abstract:
In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints
Procedia PDF Downloads 1283511 Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa Seeds by Sulforhodamine-B Assay-Guided Fractionation
Authors: Harshani Uggallage, Kapila D. Dissanayaka
Abstract:
A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction, and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells.Keywords: cytotoxic compounds, half-maximal inhibitory concentration, high-performance liquid chromatography, human HepG2 cells, nigella sativa seeds, Sulforhodamine-B assay
Procedia PDF Downloads 4013510 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: ORR, fuel cells, batteries, electrocatalyst
Procedia PDF Downloads 1133509 Cationic Solid Lipid Nanoparticles Conjugated with Anti-Melantransferrin and Apolipoprotein E for Delivering Doxorubicin to U87MG Cells
Authors: Yung-Chih Kuo, Yung-I Lou
Abstract:
Cationic solid lipid nanoparticles (CSLNs) with anti-melanotransferrin (AMT) and apolipoprotein E (ApoE) were used to carry antimitotic doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) treatment. Dox-loaded CSLNs were prepared in microemulsion, grafted covalently with AMT and ApoE, and applied to human brain microvascular endothelial cells (HBMECs), human astrocytes, and U87MG cells. Experimental results revealed that an increase in the weight percentage of stearyl amine (SA) from 0% to 20% increased the size of AMT-ApoE-Dox-CSLNs. In addition, an increase in the stirring rate from 150 rpm to 450 rpm decreased the size of AMT-ApoE-Dox-CSLNs. An increase in the weight percentage of SA from 0% to 20% enhanced the zeta potential of AMT-ApoE-Dox-CSLNs. Moreover, an increase in the stirring rate from 150 rpm to 450 rpm reduced the zeta potential of AMT-ApoE-Dox-CSLNs. AMT-ApoE-Dox-CSLNs exhibited a spheroid-like geometry, a minor irregular boundary deviating from spheroid, and a somewhat distorted surface with a few zigzags and sharp angles. The encapsulation efficiency of Dox in CSLNs decreased with increasing weight percentage of Dox and the order in the encapsulation efficiency of Dox was 10% SA > 20% SA > 0% SA. However, the reverse order was true for the release rate of Dox, suggesting that AMT-ApoE-Dox-CSLNs containing 10% SA had better-sustained release characteristics. An increase in the concentration of AMT from 2.5 to 7.5 μg/mL slightly decreased the grafting efficiency of AMT and an increase in that from 7.5 to 10 μg/mL significantly decreased the grafting efficiency. Furthermore, an increase in the concentration of ApoE from 2.5 to 5 μg/mL slightly reduced the grafting efficiency of ApoE and an increase in that from 5 to 10 μg/mL significantly reduced the grafting efficiency. Also, AMT-ApoE-Dox-CSLNs at 10 μg/mL of ApoE could slightly reduce the transendothelial electrical resistance (TEER) and increase the permeability of propidium iodide (PI). An incorporation of 10 μg/mL of ApoE could reduce the TEER and increase the permeability of PI. AMT-ApoE-Dox-CSLNs at 10 μg/mL of AMT and 5-10 μg/mL of ApoE could significantly enhance the permeability of Dox across the BBB. AMT-ApoE-Dox-CSLNs did not induce serious cytotoxicity to HBMECs. The viability of HBMECs was in the following order: AMT-ApoE-Dox-CSLNs = AMT-Dox-CSLNs = Dox-CSLNs > Dox. The order in the efficacy of inhibiting U87MG cells was AMT-ApoE-Dox-CSLNs > AMT-Dox-CSLNs > Dox-CSLNs > Dox. A surface modification of AMT and ApoE could promote the delivery of AMT-ApoE-Dox-CSLNs to cross the BBB via melanotransferrin and low density lipoprotein receptor. Thus, AMT-ApoE-Dox-CSLNs have appropriate physicochemical properties and can be a potential colloidal delivery system for brain tumor chemotherapy.Keywords: anti-melanotransferrin, apolipoprotein E, cationic catanionic solid lipid nanoparticle, doxorubicin, U87MG cells
Procedia PDF Downloads 2843508 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures
Authors: Zong-Sheng Chen
Abstract:
With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide
Procedia PDF Downloads 673507 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1263506 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation
Authors: Anupuma Raina, Ajay Parkash
Abstract:
In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.Keywords: chimerism, HSCT, STRs analysis, forensic identification
Procedia PDF Downloads 653505 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 5633504 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 783503 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning
Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath
Abstract:
The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.Keywords: BLIP, fMRI, latent diffusion model, neural perception.
Procedia PDF Downloads 683502 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds
Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui
Abstract:
The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.
Procedia PDF Downloads 363501 Toward Understanding the Glucocorticoid Receptor Network in Cancer
Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden
Abstract:
The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor
Procedia PDF Downloads 2273500 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: software quality, fuzzy logic, perception, prediction
Procedia PDF Downloads 3173499 Reconstructing Calvarial Bone Lesions Using PHBV Scaffolds and Cord Blood Mesenchymal Stem Cells in Rat
Authors: Hamed Hosseinkazemi, Esmaeil Biazar
Abstract:
For tissue engineering of bone, anatomical and operational reconstructions of damaged tissue seem to be vital. This is done via reconstruction of bone and appropriate biological joint with bone tissues of damaged areas. In this study the condition of biodegradable bed Nanofibrous PHBV and USSC cells were used to accelerate bone repair of damaged area. Hollow nanofabrication scaffold of damageable life was designed as PHBV by electrospinning and via determining the best factors such as the kind and amount of solvent, specific volume and rate. The separation of osseous tissue infiltration and evaluating its nature by flow cytometrocical analysis was done. Animal test including USSC as well as PHBV condition in the damaged bone was done in the rat. After 8 weeks the implanted area was analyzed using CT scan and was sent to histopathology ward. Finally, the rate and quality of reconstruction were determined after H and E coloring. Histomorphic analysis indicated a statistically significant difference between the experimental group of PHBV, USSC+PHBV and control group. Besides, the histopathologic analysis showed that bone reconstruction rate was high in the area containing USSC and PHBV, compared with area having PHBV and control group and consequently the reconstruction quality of bones and the relationship between the new bone tissues and surrounding bone tissues were high too. Using PHBR scaffold and USSC together could be useful in the amending of wide range of bone lesion.Keywords: bone lesion, nanofibrous PHBV, stem cells, umbilical cord blood
Procedia PDF Downloads 3183498 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers
Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke
Abstract:
In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography
Procedia PDF Downloads 1793497 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology
Authors: Getachew Kuma Watiro
Abstract:
The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency
Procedia PDF Downloads 1193496 Expression of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5'-Monophosphate Decarboxylase in Escherichia coli
Authors: Waranya Imprasittichai, Patsarawadee Paojinda, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai
Abstract:
Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. In this study, we constructed gene fusions of Plasmodium falciparum OMPDC-OPRT (1,836 bp) in pTrcHisA vector and expressed as an 6xHis-tag bifunctional protein in three Escherichia coli strains (BL21, Rosetta, TOP10) at 18 °C, 25 °C and 37 °C. The recombinant bifunctional protein was partially purified by Ni-Nitrilotriacetic acid-affinity chromatography. Specific activities of OPRT and OMPDC domains in the bifunctional enzyme expressed in E. coli TOP10 cells were approximately 3-4-fold higher than those in BL21 cells. There were no enzymatic activities when the construct vector expressed in Rosetta cells. Maximal expression of the fused gene was observed at 18 °C and the bifunctional enzyme had specific activities of OPRT and OMPDC domains in a ratio of 1:2. These results provide greater yields and better catalytic activities of the bifunctional OMPDC-OPRT enzyme for further purification and kinetic study.Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum
Procedia PDF Downloads 3543495 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1693494 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis
Authors: Serdal Pamuk, Irem Cay
Abstract:
Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function
Procedia PDF Downloads 1563493 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery
Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi
Abstract:
A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope
Procedia PDF Downloads 2583492 The Role of Autophagy Modulation in Angiotensin-II Induced Hypertrophy
Authors: Kitti Szoke, Laszlo Szoke, Attila Czompa, Arpad Tosaki, Istvan Lekli
Abstract:
Autophagy plays an important role in cardiac hypertrophy, which is one of the most common causes of heart failure in the world. This self-degradative catabolic process, responsible for protein quality control, balancing sources of energy at critical times, and elimination of damaged organelles. The autophagic activity can be triggered by starvation, oxidative stress, or pharmacological agents, like rapamycin. This induced autophagy can promote cell survival during starvation or pathological stress. In this study, it is investigated the effect of the induced autophagic process on angiotensin induced hypertrophic H9c2 cells. In our study, it is used H9c2 cells as an in vitro model. To induce hypertrophy, cells were treated with 10000 nM angiotensin-II, and to activate autophagy, 100 nM rapamycin treatment was used. The following groups were formed: 1: control, 2: 10000 nM AT-II, 3: 100 nM rapamycin, 4: 100 nM rapamycin pretreatment then 10000 nM AT-II. The cell viability was examined via MTT (cell proliferation assay) assay. The cells were stained with rhodamine-conjugated phalloidin and DAPI to visualize F-actin filaments and cell nuclei then the cell size alteration was examined in a fluorescence microscope. Furthermore, the expression levels of autophagic and apoptotic proteins such as Beclin-1, p62, LC3B-II, Cleaved Caspase-3 were evaluated by Western blot. MTT assay result suggests that the used pharmaceutical agents in the tested concentrations did not have a toxic effect; however, at group 3, a slight decrement was detected in cell viability. In response to AT-II treatment, a significant increase was detected in the cell size; cells became hypertrophic. However, rapamycin pretreatment slightly reduced the cell size compared to group 2. Western blot results showed that AT-II treatment-induced autophagy, because the increased expression of Beclin-1, p62, LC3B-II were observed. However, due to the incomplete autophagy, the apoptotic Cleaved Caspase-3 expression also increased. Rapamycin pretreatment up-regulated Beclin-1 and LC3B-II, down-regulated p62 and Cleaved Caspase-3, indicating that rapamycin-induced autophagy can restore the normal autophagic flux. Taken together, our results suggest that rapamycin activated autophagy reduces angiotensin-II induced hypertrophy.Keywords: angiotensin-II, autophagy, H9c2 cell line, hypertrophy, rapamycin
Procedia PDF Downloads 1473491 Behavioral Effects of Oxidant and Reduced Chemorepellent on Mutant and Wild-Type Tetrahymena thermophila
Authors: Ananya Govindarajan
Abstract:
Tetrahymena thermophila is a single-cell, eukaryotic organism that belongs to the Protozoa Kingdom. Tetrahymena thermophila is often used in signal transduction pathway studies because of its ability to model sensory input and the effects of environmental conditions such as chemicals and temperature. The recently discovered G37 chemorepellent receptor showed increased responsiveness to all chemorepellents. Investigating the mutant G37 Tetrahymena gene in various test solutions, including ferric chloride, ferrous sulfate, hydrogen peroxide, tetrazolium blue, potassium chloride, and dithiothreitol were performed to determine the role of oxidants and reducing agents with the mutant and wild-type cells (CU427) to assess the role of the receptor. Behavioral assays and recordings processed by ImageJ indicated that ferric chloride, hydrogen peroxide, and tetrazolium blue yielded little to no chemorepellent responses from G37 cells (<20% ARs). CU427 cells were over-responsive based on the mean percent of cells (>50% ARs). Reducing agents elicited chemorepellent responses from both G37 and CU427, in addition to potassium chloride. Cell responses were classified as over-responsive (>50% ARs). Dithiothreitol yielded unexpected results as G37 (37.0% ARs) and CU427 (38.1% ARs) had relatively similar responses and were only responsive and not over-responsive to the reducing agent test chemical solution. Ultimately, this indicates that the G37 receptor is more interactive with molecules that are reducing agents or non-oxidant compounds; G37 may be unable to sense and respond to oxidants effectively, further elucidating the pathways of the G37 strain and nature of this receptor. Results also indicate that the CSF most likely contained an oxidant, like ferric chloride. This research can be further applied to neuronal influences and how specific compounds may affect human neurons individually and their excitability as the responses model action potentials and membrane potential.Keywords: tetrahymena thermophila, signal transduction, chemosensory, oxidant, reducing agent
Procedia PDF Downloads 1323490 Anticancer Activity of Milk Fat Rich in Conjugated Linoleic Acid Against Ehrlich Ascites Carcinoma Cells in Female Swiss Albino Mice
Authors: Diea Gamal Abo El-Hassan, Salwa Ahmed Aly, Abdelrahman Mahmoud Abdelgwad
Abstract:
The major conjugated linoleic acid (CLA) isomers have anticancer effect, especially breast cancer cells, inhibits cell growth and induces cell death. Also, CLA has several health benefits in vivo, including antiatherogenesis, antiobesity, and modulation of immune function. The present study aimed to assess the safety and anticancer effects of milk fat CLA against in vivo Ehrlich ascites carcinoma (EAC) in female Swiss albino mice. This was based on acute toxicity study, detection of the tumor growth, life span of EAC bearing hosts, and simultaneous alterations in the hematological, biochemical, and histopathological profiles. Materials and Methods: One hundred and fifty adult female mice were equally divided into five groups. Groups (1-2) were normal controls, and Groups (3-5) were tumor transplanted mice (TTM) inoculated intraperitoneally with EAC cells (2×106 /0.2 mL). Group (3) was (TTM positive control). Group (4) TTM fed orally on balanced diet supplemented with milk fat CLA (40 mg CLA/kg body weight). Group (5) TTM fed orally on balanced diet supplemented with the same level of CLA 28 days before tumor cells inoculation. Blood samples and specimens from liver and kidney were collected from each group. The effect of milk fat CLA on the growth of tumor, life span of TTM, and simultaneous alterations in the hematological, biochemical, and histopathological profiles were examined. Results: For CLA treated TTM, significant decrease in tumor weight, ascetic volume, viable Ehrlich cells accompanied with increase in life span were observed. Hematological and biochemical profiles reverted to more or less normal levels and histopathology showed minimal effects. Conclusion: The present study proved the safety and anticancer efficiency of milk fat CLA and provides a scientific basis for its medicinal use as anticancer attributable to the additive or synergistic effects of its isomers.Keywords: anticancer activity, conjugated linoleic acid, Ehrlich ascites carcinoma, % increase in life span, mean survival time, tumor transplanted mice.
Procedia PDF Downloads 903489 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 733488 Satureja bachtiarica Bunge Induce Apoptosis via Mitochondrial Intrinsic Pathway and G1 Cell Cycle Arrest
Authors: Hamed Karimian, Noraziah Nordin, Mohamad Ibrahim Noordin, Syam Mohan, Mahboubeh Razavi, Najihah Mohd Hashim, Happipah Mohd Ali
Abstract:
Satureja bachtiarica Bunge is a perennial medicinal plant belonging to the Lamiaceae family and endemic species in Iran. Satureja bachtiarica Bunge with the local name of Marzeh koohi is edible vegetable use as flavoring agent, anti-bacterial and to relieve cough and indigestion. In this study, the anti-cancer effect of Satureja bachtiarica Bunge on the MDA-MB-231 cell line as an Breast cancer cell model has been analyzed for the first time. Satureja bachtiarica Bunge was extracted using different solvents in the order of increasing polarity. Cytotoxicity activity of hexane extract of Satureja bachtiarica Bunge (SBHE) was observed using MTT assay. Acridine orange/Propidium iodide staining was used to detect early apoptosis; Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS), with Annexin-Vserving as a marker for apoptotic cells. Caspase 3/7, 8 and-9 assays showed significantly activation of caspase-9 where lead intrinsic mitochondrial pathway. Bcl-2/Bax expressions and cell cycle arrest were also investigated. SBHE had exhibited significantly higher cytotoxicity against MDA-MB-231 Cell line compare to other cell lines. A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Treatment of MDA-MB-231 cells with SBHE encouraged apoptosis, by down-regulating Bcl-2 and up-regulating Bax, which lead the activation of caspase 9. Moreover, SBHE treatment significantly arrested MDA-MB-231 cells in the G1 phase. Together, the results presented in this study demonstrated that SBHE inhibited the proliferation of MDA-MB-231 cells, leading cell cycle arrest and programmed cell death, which was confirmed to be through the mitochondrial pathway.Keywords: Satureja bachtiarica Bunge, MDA-MB-231, apoptosis, annexin-V, cell cycle
Procedia PDF Downloads 3373487 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 136