Search results for: networked model predictive control
24651 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.Keywords: absorption, distillation, heat pump, Unisim design
Procedia PDF Downloads 33824650 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 32624649 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models
Authors: Tejush Badal, Sanaa Alwidian
Abstract:
Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.Keywords: analysis, class diagram, model family, unified modeling language, union model
Procedia PDF Downloads 7624648 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils
Authors: Karim Kootahi, Seyed Abolhasan Naeini
Abstract:
The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.Keywords: SWCC, correlations, index properties, validation
Procedia PDF Downloads 17724647 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: distributed control, game theory, multi-agent learning, reinforcement learning
Procedia PDF Downloads 46024646 Real-time Rate and Rhythms Feedback Control System in Patients with Atrial Fibrillation
Authors: Mohammad A. Obeidat, Ayman M. Mansour
Abstract:
Capturing the dynamic behavior of the heart to improve control performance, enhance robustness, and support diagnosis is very important in establishing real time models for the heart. Control Techniques and strategies have been utilized to improve system costs, reliability, and estimation accuracy for different types of systems such as biomedical, industrial, and other systems that required tuning input/output relation and/or monitoring. Simulations are performed to illustrate potential applications of the technology. In this research, a new control technology scheme is used to enhance the performance of the Af system and meet the design specifications.Keywords: atrial fibrillation, dynamic behavior, closed loop, signal, filter
Procedia PDF Downloads 42224645 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 9924644 Erosion Modeling of Surface Water Systems for Long Term Simulations
Authors: Devika Nair, Sean Bellairs, Ken Evans
Abstract:
Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems
Procedia PDF Downloads 8624643 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis
Procedia PDF Downloads 46624642 A Fast and Cost-Effective Method to Monitor Microplastics in Compost and Soiduration of Enterococcus Faecalis Penetration in Environmentally Exposed Root Canals Obturated With Lateral Condensation Technique
Authors: N. Thawornwisit, P. Pradoo, S. Nuypree, L. Jarukasetrporn, S. Jitpukdeebodintra
Abstract:
Objective: The aim of this study was to evaluate the duration of the Enterococcus faecalis (E. faecalis) penetration into the gap between root canal wall and filling material at a 3 to 6 mm distance from the cementoenamel junction (CEJ) in the dislodged temporary filling, in vitro. Material and methods: Thirty-four single root canal mandibular premolars were divided into two experimental groups (N = 15) and one negative control (N = 4). Root canals were prepared and obturated with gutta-percha using lateral condensation technique, X-ray checked, and sterilized. Leakages were set up using the modified bacterial leakage model, and E. faecalis was used as a microbial marker. Leakages were evaluated at 3 and 7 days by culturing gutta-percha and dentine drilled from a 3-6 mm distance from CEJ. Broth turbidity was recorded and compared. Result: All four negative control and the 3-day experimental group showed no broth turbidity. For the 7-day experimental group, there was 33.3% leakage. Conclusion: Penetration of E. faecalis into the gap between root canal wall and filling material at a 3 to 6 mm distance from CEJ in the dislodged temporary filling were not found at three days. However, at seven days of exposure, bacteria could penetrate into the interface of the root canal and filling materials.Keywords: coronal leakage, bacterial leakage model, enterococcus faecalis
Procedia PDF Downloads 9424641 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script
Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim
Abstract:
A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis
Procedia PDF Downloads 24124640 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3624639 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 41224638 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 30524637 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents
Authors: Düzgün Akmaz, Hüseyin Erişti
Abstract:
In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.Keywords: parallel active power filters, harmonic compensation, power quality, harmonics
Procedia PDF Downloads 46024636 Impacts of Social Support on Perceived Level of Stress and Self-Esteem among Students of Private Universities of Karachi-Pakistan
Authors: Sheeba Farhan
Abstract:
This study is conducted to explore the predictive relationship of perceived stress and self-esteem with social support of students and to explore the factors, which contribute to develop or enhance the level of stress in students of private universities in Karachi-Pakistan. After literature review following hypotheses were formulated; 1)social support would predict perceived stress of students of business administration of private organizations of Higher education, 2) social support would predict the self-esteem of students of private organizations of Higher education, 3) there will be a relationship of perceived stress and self-esteem of students of private organizations of Higher education, 4) there will be a relationship of self esteem and social support of students of private organizations of Higher education. Sample of the study is comprise of 100 students of private organizations of Higher education in Karachi- Pakistan (i.e. males= 50 & females= 50). The age range of participants is 18-26 years. The measures, used in the study are: Demographic information form, a semi structured interview form, Rosenberg self esteem scale (Rosenberg, 1965) and perceived stress scale (Cohen, Kamarck, and Mermelstein, 1983) and multidimensional scale of perceived social support (Zimet, 1988) Descriptive statistics is used for getting a better statistical view of characteristics of sample. Regression analysis is used to explore the predictive relationship of study related stress and self esteem with academic achievement of students of private organizations of Higher education. Percentages and ratios were calculated to explore the level of perceived stress with respect to Socio-demographic characteristics in students of private organizations of Higher education. Finding shows that social support is significantly associated with the higher level of self-esteem among students of graduation but insignificantly associated with stress that has been experienced by them. These results are correlated with a wide variety of studies in which social support has proposed to be a predictor of well being for the students.Keywords: private universities of Karachi-Pakistan, Self-esteem, social support, stress
Procedia PDF Downloads 29524635 The Development and Testing of Greenhouse Comprehensive Environment Control System
Authors: Mohammed Alrefaie, Yaser Miaji
Abstract:
Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.Keywords: greenhouse, control system, light intensity, comprehensive environment
Procedia PDF Downloads 48424634 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 34024633 The Social Change Leadership Model for Administrators and Teachers Development in Northeast Thailand
Authors: D. Thawinkarn, S. Wongbutlee
Abstract:
The Social Change Leadership model is strongly aligned with administration’s mission. This research aims to examine the elements of social change leadership, build and develop leadership for social change, and evaluate effectiveness of leadership development model for social change. The research operation has 3 phases: model studies by in-depth interviews and survey research; drafting and creating model which verified by the experts; and trial of model in schools. The results showed that administrators and teachers have the elements of leadership for social change in moderate level. These elements are ranged descending from consciousness of self, common purpose, congruence, collaboration, commitment, citizenship, and controversy with civility. Model of leadership for social change is included the principles, objectives, content, process. Workshop process: Results show that the model of leadership development for social change in administrators and teachers leads to higher score in leadership evaluation prior to administering the operation.Keywords: leadership, social change model, organization, administrators
Procedia PDF Downloads 42024632 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control
Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha
Abstract:
This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.Keywords: attitude control, flexible satellite, vibration control, disturbance observer
Procedia PDF Downloads 8724631 Management Control Systems in Post-Incubation: An Investigation of Closed Down High-Technology Start-Ups
Authors: Jochen Edmund Kerschenbauer, Roman Salinger, Daniel Strametz
Abstract:
Insufficient informal communication systems can lead to the first crisis (‘Crisis of Leadership’) for start-ups. Management Control Systems (MCS) are one way for high-technology start-ups to successfully overcome these problems. So far the literature has investigated the incubation of a start-up, but focused less on the post-incubation stage. This paper focuses on the use of MCS in post-incubation and, if failed start-ups agree, on how MCS are used. We conducted 14 semi-structured interviews for this purpose, to obtain our results. The overall conclusion is that the majority of the companies were closed down due to a combination of strategic, operative and financial reasons.Keywords: closed down, high-technology, incubation, levers of control, management control systems, post-incubation, start-ups
Procedia PDF Downloads 109424630 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control
Procedia PDF Downloads 46724629 Applications of Artificial Neural Networks in Civil Engineering
Authors: Naci Büyükkaracığan
Abstract:
Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics
Procedia PDF Downloads 41524628 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29424627 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 17024626 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40724625 Assessment of Nurse's Knowledge Toward Infection Control for Wound Care in Governmental Hospital at Amran City-Yemen
Authors: Fares Mahdi
Abstract:
Background: Infection control is an important concern for all health care professionals, especially nurses. Nurses have a higher risk for both self-acquiring and transmitting infections to other patients. Aim of this study: to assess nurses' knowledge regarding infection control for wound care. Methodology: a descriptive research design was used in the study. The total number studied sample was 200 nurses, were conducting in Amran Public Hospitals in Amran City- Yemen. The study covered sample nurses in the hospital according to the study population; a standard closed-ended questionnaire was used to collect the data. Results: The results showed less than half (37.5 %) of nurses were from 22 May Hospital, also followed by (62.5%) of them were from Maternal and Child Hospital. Also according to the department name. Most (22.5%) of nurses worked in an intensive care unit, followed by (20%) of them were working in the pediatric world, also about (19%) of them were working in the surgical department. While in finally, only about (8.5%) of them worked from another department. According to course training, The results showed about (21%) of nurses had course training in wound care management. At the same time, others (79%) of them have not had course training in wound care management. According to the total nurse's knowledge of infection control for wound care, that find more than two-thirds (68%) of nurses had fair knowledge according to total all of nurse's knowledge of infection control wound care. Conclusion:The results showed that more than two-thirds (68%) of nurses had fair knowledge according to total all of the nurse's knowledge of infection control for wound care. Recommendations: There should be providing training program about infection control masseurs and it's important for new employees of nurses. Providing continuing refreshment training courses about infection control programs and about evidence-based practice in infection control for all health care teams.Keywords: assessment, knowledge, infection control, wound care, nurses, amran hospitals
Procedia PDF Downloads 9624624 Tc-99m MIBI Scintigraphy to Differentiate Malignant from Benign Lesions, Detected on Planar Bone Scan
Authors: Aniqa Jabeen
Abstract:
The aim of this study was to evaluate the effectiveness of Tc-99m MIBI (Technetium 99-methoxy-iso-butyl-isonitrile) scintigraphy to differentiate malignancies from benign lesions, which were detected on planar bone scans. Materials and Methods: 59 patients with bone lesions were enrolled in the study. The scintigraphic findings were compared with the clinical, radiological and the histological findings. Each patient initially underwent a three-phase bone scan with Tc-99m MDP (Methylene Diphosphonate) and if evidence of lesion found, the patient then underwent a dynamic and static MIBI scintigraphy after three to four days. The MDP and MIBI scans were evaluated visually and quantitatively. For quantitative analysis count ratios of lesions and contralateral normal side (L/C) were taken by region of interests drawn on scans. The Student T test was applied to assess the significant difference between benign and malignant lesions p-value < 0.05 was considered significant. Result: The MDP scans showed the increase tracer uptake, but there was no significant difference between benign and malignant uptake of the radiotracer. However significant difference (p-value 0.015), in uptake was seen in malignant (L/C = 3.51 ± 1.02) and benign lesion (L/C = 2.50±0.42) on MIBI scan. Three of thirty benign lesions did not show significant MIBI uptake. Seven malignant appeared as false negatives. Specificity of the scan was 86.66%, and its Negative Predictive Value (NPV) was 81.25% whereas the sensitivity of scan was 79.31%. In excluding the axial metastasis from the lesions, the sensitivity of MIBI scan increased to 91.66% and the NPV also increased to 92.85%. Conclusion: MIBI scintigraphy provides its usefulness by distinguishing malignant from benign lesions. MIBI also correctly identifies metastatic lesions. The negative predictive value of the scan points towards its ability to accurately diagnose the normal (benign) cases. However, biopsy remains the gold standard and a definitive diagnostic modality in musculoskeletal tumors. MIBI scan provides useful information in preoperative assessment and in distinguishing between malignant and benign lesions.Keywords: benign, malignancies, MDP bone scan, MIBI scintigraphy
Procedia PDF Downloads 40524623 Design of Control System Based On PLC and Kingview for Granulation Product Line
Authors: Mei-Feng, Yude-Fan, Min-Zhu
Abstract:
Based on PLC and kingview, this paper proposed a method that designed a set of the automatic control system according to the craft flow and demands for granulation product line. There were the main station and subordinate stations in PLC which were communicated by PROFIBUS network. PLC and computer were communicated by Ethernet network. The conversation function between human and machine was realized by kingview software, including actual time craft flows, historic report curves and product report forms. The construction of the control system, hardware collocation and software design were introduced. Besides these, PROFIBUS network frequency conversion control, the difficult points and configuration software design were elaborated. The running results showed that there were several advantages in the control system. They were high automatic degree, perfect function, perfect steady and convenient operation.Keywords: PLC, PROFIBUS, configuration, frequency
Procedia PDF Downloads 40324622 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System
Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision, free trajectories
Procedia PDF Downloads 375