Search results for: launch vehicle modeling
3945 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, faryab, surface runoff
Procedia PDF Downloads 1783944 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 2883943 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau
Abstract:
Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam
Procedia PDF Downloads 3373942 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 723941 Building Information Modeling Implementation for Managing an Extra Large Governmental Building Renovation Project
Authors: Pornpote Nusen, Manop Kaewmoracharoen
Abstract:
In recent years, there was an observable shift in fully developed countries from constructing new buildings to modifying existing buildings. The issue was that although an effective instrument like BIM (Building Information Modeling) was well developed for constructing new buildings, it was not widely used to renovate old buildings. BIM was accepted as an effective means to overcome common managerial problems such as project delay, cost overrun, and poor quality of the project life cycle. It was recently introduced in Thailand and rarely used in a renovation project. Today, in Thailand, BIM is mostly used for creating aesthetic 3D models and quantity takeoff purposes, though it can be an effective tool to use as a project management tool in planning and scheduling. Now the governmental sector in Thailand begins to recognize the uses of using BIM to manage a construction project, but the knowledge about the BIM implementation to governmental construction projects is underdeveloped. Further studies need to be conducted to maximize its advantages for the governmental sector. An educational extra large governmental building of 17,000 square-meters was used in this research. It is currently under construction for a two-year renovation project. BIM models of the building for the exterior and interior areas were created for the whole five floors. Then 4D BIM with combination of 3D BIM plus time was created for planning and scheduling. Three focus groups had been done with executive committee, contractors, and officers of the building to discuss the possibility of usage and usefulness of BIM approach over the traditional process. Several aspects were discussed in the positive sides, especially several foreseen problems, such as the inadequate accessibility of ways, the altered ceiling levels, the impractical construction plan created through a traditional approach, and the lack of constructability information. However, for some parties, the cost of BIM implementation was a concern, though, this study believes, its uses outweigh the cost.Keywords: building information modeling, extra large building, governmental building renovation, project management, renovation, 4D BIM
Procedia PDF Downloads 1523940 Effect of Measured and Calculated Static Torque on Instantaneous Torque Profile of Switched Reluctance Motor
Authors: Ali Asghar Memon
Abstract:
The simulation modeling of switched reluctance (SR) machine often relies and uses the three data tables identified as static torque characteristics that include flux linkage characteristics, co energy characteristics and static torque characteristics separately. It has been noticed from the literature that the data of static torque used in the simulation model is often calculated so far the literature is concerned. This paper presents the simulation model that include the data of measured and calculated static torque separately to see its effect on instantaneous torque profile of the machine. This is probably for the first time so far the literature review is concerned that static torque from co energy information, and measured static torque directly from experiments are separately used in the model. This research is helpful for accurate modeling of switched reluctance drive.Keywords: static characteristics, current chopping, flux linkage characteristics, switched reluctance motor
Procedia PDF Downloads 2893939 Influence of Entrepreneurial Passion in the Relationship between the Entrepreneurship Education and Entrepreneurial Intention: The Case of Moroccan Students
Authors: Soukaina Boutaky, Abdelhak Sahibeddine
Abstract:
A study was carried out among students who have especially a scientific and technical educational background and who had opportunities to benefit from a program entrepreneurship course of 50 hours; at Higher School of Technology Khenifra, Morocco. This article has as a goal to explain the relationship between entrepreneurial education, entrepreneurial passion and entrepreneurial intention. The authors chose Bandura’s theory of social cognition as a theoretical framework. The modeling methods equation is adopted to analyze the hypotheses by SMART PLS for 188 students. The results show a strong positive relationship between entrepreneurial education and entrepreneurial passion. They also reveal that entrepreneurship education affects entrepreneurial intention through the effect of entrepreneurial passion, particularly among women than men. In addition, this study contributes in a theoretical way to the level of the relationship between entrepreneurial education and entrepreneurial passion, and these results provide educators and public decision-makers with advice on the importance of entrepreneurship training based on emotional traits such as passion; which constitutes a key and essential element to encourage young graduates to choose an entrepreneurial career as an alternative option or to develop entrepreneurial passion among the business leaders of tomorrow.Keywords: entrepreneurship education, entrepreneurial passion, entrepreneurial intention, equation modeling methods
Procedia PDF Downloads 1923938 Thermoplastic-Intensive Battery Trays for Optimum Electric Vehicle Battery Pack Performance
Authors: Dinesh Munjurulimana, Anil Tiwari, Tingwen Li, Carlos Pereira, Sreekanth Pannala, John Waters
Abstract:
With the rapid transition to electric vehicles (EVs) across the globe, car manufacturers are in need of integrated and lightweight solutions for the battery packs of these vehicles. An integral part of a battery pack is the battery tray, which constitutes a significant portion of the pack’s overall weight. Based on the functional requirements, cost targets, and packaging space available, a range of materials –from metals, composites, and plastics– are often used to develop these battery trays. This paper considers the design and development of integrated thermoplastic-intensive battery trays, using the available packaging space from a representative EV battery pack. Presented as a proposed alternative are multiple concepts to integrate several connected systems such as cooling plates and underbody impact protection parts of a multi-piece incumbent battery pack. The resulting digital prototype was evaluated for several mechanical performance measures such as mechanical shock, drop, crush resistance, modal analysis, and torsional stiffness. The performance of this alternative design is then compared with the incumbent solution. In addition, insights are gleaned into how these novel approaches can be optimized to meet or exceed the performance of incumbent designs. Preliminary manufacturing feasibility of the optimal solution using injection molding and other commonly used manufacturing methods for thermoplastics is briefly explained. Then numerical and analytical evaluations are performed to show a representative Pareto front of cost vs. volume of the production parts. The proposed solution is observed to offer weight savings of up to 40% on a component level and part elimination of up to two systems in the battery pack of a typical battery EV while offering the potential to meet the required performance measures highlighted above. These conceptual solutions are also observed to potentially offer secondary benefits such as improved thermal and electrical isolations and be able to achieve complex geometrical features, thus demonstrating the ability to use the complete packaging space available in the vehicle platform considered. The detailed study presented in this paper serves as a valuable reference for researches across the globe working on the development of EV battery packs – especially those with an interest in the potential of employing alternate solutions as part of a mixed-material system to help capture untapped opportunities to optimize performance and meet critical application requirements.Keywords: thermoplastics, lightweighting, part integration, electric vehicle battery packs
Procedia PDF Downloads 2043937 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3673936 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique
Authors: Manar Al-Ateeq
Abstract:
The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)
Procedia PDF Downloads 1733935 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model
Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu
Abstract:
Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis
Procedia PDF Downloads 3683934 Parental Drinking and Risky Alcohol Related Behaviors: Predicting Binge Drinking Trajectories and Their Influence on Impaired Driving among College Students
Authors: Shiran Bord, Assaf Oshri, Matthew W. Carlson, Sihong Liu
Abstract:
Background: Alcohol-impaired driving (AID) and binge drinking are major health concerns among college students. Although the link between binge drinking and AID is well established, knowledge regarding binge drinking patterns, the factors influencing binge drinking, and the associations between consumption patterns and alcohol-related risk behaviors is lacking. Aims: To examine heterogeneous trajectories of binge drinking during college and tests factors that might predict class membership as well as class membership outcomes. Methods: Data were obtained from a sample of 1,265 college students (Mage = 18.5, SD = .66) as part of the Longitudinal Study of Violence Against Women (N = 1,265; 59.3% female; 69.2% white). Analyses were completed in three stages. First, a growth curve analysis was conducted to identify trajectories of binge drinking over time. Second, growth curve mixture modeling analyses were pursued to assess unobserved growth trajectories of binge drinking without predictors. Lastly, parental drinking variables were added to the model as predictors of class membership, and AID and being a passenger of a drunk driver were added to the model as outcomes. Results: Three binge drinking trajectories were identified: high-convex, medium concave and low-increasing. Parental drinking was associated with being in high-convex and medium-concave classes. Compared to the low-increasing class, the high convex and medium concave classes reported more AID and being a passenger of a drunk driver more frequently. Conclusions: Parental drinking may affect children’s later engagement in AID. Efforts should focus on parents' education regarding the consequences of parental modeling of alcohol consumption.Keywords: alcohol impaired driving, alcohol consumption, binge drinking, college students, parental modeling
Procedia PDF Downloads 2803933 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network
Authors: Prateeksha Mahamallik, Anjali Pal
Abstract:
In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology
Procedia PDF Downloads 2523932 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis
Authors: Yazid Alkraimeen
Abstract:
Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses
Procedia PDF Downloads 1363931 Risk Spillover Between Stock Indices and Real Estate Mixed Copula Modeling
Authors: Hina Munir Abbasi
Abstract:
The current paper examines the relationship and diversification ability of Islamic stock indices /conventional stocks indices and Real Estate Investment Trust (REITs).To represent conditional dependency between stocks and REITs in a more realistic way, new modeling technique, time-varying copula with switching dependence is used. It represents reliance structure more accurately and realistically than a single copula regime as dependence may alter between positive and negative correlation regimes with time. The fluctuating behavior of markets has significant impact on economic variables; especially the downward trend during crisis. Overall addition of Real Estate Investment Trust in stocks portfolio reduces risks and provide better diversification benefit. Results varied depending upon the circumstances of the country. REITs provides better diversification benefits for Islamic Stocks, when both markets are bearish and can provide hedging benefit for conventional stocks portfolio.Keywords: conventional stocks, real estate investment trust, copula, diversification, risk spillover, safe heaven
Procedia PDF Downloads 823930 Performance of an Automotive Engine Running on Gasoline-Condensate Blends
Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis
Abstract:
Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends
Procedia PDF Downloads 2493929 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part I: Formulation
Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad
Abstract:
As energetic and environmental issues are getting more and more attention all around the world, the penetration of distributed energy resources (DERs) mainly those harvesting renewable energies (REs) ascends with an unprecedented rate. This matter causes more uncertainties to appear in the power system context; ergo, the uncertainty analysis of the system performance is an obligation. The uncertainties of any system can be represented probabilistically or possibilistically. Since sufficient historical data about all the system variables is not available, therefore, they do not have a probability density function (PDF) and must be represented possibilistiacally. When some of system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is appealed. The first of this two-paper series formulates a new possibilistic-probabilistic tool for the load flow uncertainty assessment. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. This possibilistic- probabilistic formulation is solved in the second companion paper in an uncertain load flow (ULF) study problem.Keywords: probabilistic uncertainty modeling, possibilistic uncertainty modeling, uncertain load flow, wind turbine generator
Procedia PDF Downloads 5603928 Computational Fluid Dynamics Modeling of Physical Mass Transfer of CO₂ by N₂O Analogy Using One Fluid Formulation in OpenFOAM
Authors: Phanindra Prasad Thummala, Umran Tezcan Un, Ahmet Ozan Celik
Abstract:
Removal of CO₂ by MEA (monoethanolamine) in structured packing columns depends highly on the gas-liquid interfacial area and film thickness (liquid load). CFD (computational fluid dynamics) is used to find the interfacial area, film thickness and their impact on mass transfer in gas-liquid flow effectively in any column geometry. In general modeling approaches used in CFD derive mass transfer parameters from standard correlations based on penetration or surface renewal theories. In order to avoid the effect of assumptions involved in deriving the correlations and model the mass transfer based solely on fluid properties, state of art approaches like one fluid formulation is useful. In this work, the one fluid formulation was implemented and evaluated for modeling the physical mass transfer of CO₂ by N₂O analogy in OpenFOAM CFD software. N₂O analogy avoids the effect of chemical reactions on absorption and allows studying the amount of CO₂ physical mass transfer possible in a given geometry. The computational domain in the current study was a flat plate with gas and liquid flowing in the countercurrent direction. The effect of operating parameters such as flow rate, the concentration of MEA and angle of inclination on the physical mass transfer is studied in detail. Liquid side mass transfer coefficients obtained by simulations are compared to the correlations available in the literature and it was found that the one fluid formulation was effectively capturing the effects of interface surface instabilities on mass transfer coefficient with higher accuracy. The high mesh refinement near the interface region was found as a limiting reason for utilizing this approach on large-scale simulations. Overall, the one fluid formulation is found more promising for CFD studies involving the CO₂ mass transfer.Keywords: one fluid formulation, CO₂ absorption, liquid mass transfer coefficient, OpenFOAM, N₂O analogy
Procedia PDF Downloads 2193927 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system
Procedia PDF Downloads 993926 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions
Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski
Abstract:
The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.Keywords: waste heat recovery, heat exchanger, CFD simulation, pems
Procedia PDF Downloads 5733925 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 1643924 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments
Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño
Abstract:
Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.Keywords: heat transfer, heat treatment, mango, modeling and simulation
Procedia PDF Downloads 2463923 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning
Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka
Abstract:
In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis
Procedia PDF Downloads 563922 Electrical Design Review Based on BIM-MEP Model
Authors: Michael Liu, Sen-Chou Tsai, Yu-Tang Huang, Tai-Chun Lin, Guan-Chyun Hsieh
Abstract:
This study proposes an electrical review method for mechanical, electrical, and plumbing (MEP) using building information modeling (BIM). The purpose is to reliably simplify the review work, directly evaluate the layout of electrical equipment and wiring, and calculate short-circuit current and line voltage drop based on BIM-MEP models. The study was done by MIEtech Company in collaboration with Taiwan Power Company (TPC), which is basically the unit responsible for reviewing the design of electrical appliances. This study aims to simplify the review process, reduce manual review errors, and improve the timeliness and reliability of reviews. In addition, the review system provides insight into the process and correctness of the precise integration of wiring, plumbing, and electrical equipment into the building structure, improving the safety and reliability of building electricity. In addition, it can also assist electrical engineers to use BIM to enhance the accuracy and self-detection capabilities of circuit design and improve the timeliness of the design process.Keywords: mechanical, electrical and plumbing, building information modeling, electrical review method
Procedia PDF Downloads 73921 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation
Authors: Mounia El Hafyani, Khalid El Himdi
Abstract:
Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations
Procedia PDF Downloads 1243920 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2053919 Secret Agents in the Azores during the Second World War and the Impact of Espionage on Portuguese-British Relations
Authors: Marisa Galiza Filipe
Abstract:
In 1942, at the height of the Second World War, Roosevelt and Churchill planned to occupy the Azores to establish air and naval bases. The islands' privileged position in the middle of the Atlantic made them a strategic location for both the Axis and the Allies. For the Germans, the occupation of the island was also a strategic place to launch an attack on the United States of America, and for the British and Americans, the islands were the perfect spot to counterattack the German sinking of British boats and submarines. Salazar avoided the concession of the islands until 1943, claiming, on the one hand, the policy of neutrality, a decision made in agreement with England, and on the other hand, the reaffirmation of Portuguese sovereignty over the territory. Aware of the constant changes and supported by a network of informers on the islands, the German and British spies played a crucial role in the negotiations between Portugal and the Allies and the ceding of the bases by Salazar, which prevented their forced occupation. The espionage caused several diplomatic tensions, and the large number of German spies denounced by the British, operating on the islands under the watchful eye of the PVDE and Salazar, weakened the Portuguese-British alliance. Using primary source documents in the Ministério dos Negócios Estrangeiros (MNE) archives, this paper introduces the spies that operated on the islands, their missions and motives, organizations, and modus operandi. As a chess game, any move was careful thinking and the spies were valuable assets to control and use information that could lead to the occupation of the islands and, ultimately, change the tide of the war.Keywords: espionage, Azores, WWI, neutrality
Procedia PDF Downloads 643918 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade
Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour
Abstract:
The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation
Procedia PDF Downloads 3593917 Lack of BIM Training: Investigating Practical Solutions for the State of Kuwait
Authors: Noor M. Abdulfattah, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Despite the evident benefits of building information modeling (BIM) to the construction industry, it faces significant implementation challenges in the State of Kuwait. This study investigates the awareness of construction stakeholders of BIM implementation challenges, and identifies various solutions to overcome these challenges. Specifically, the main objectives of this study are to: (1) characterize the barriers that deter utilization of BIM, (2) examine the awareness of engineers, architects, and construction stakeholders of these barriers, and (3) identify practical solutions to facilitate BIM utilization. A questionnaire survey was designed to collect data on the aforementioned objectives from local companies and senior BIM experts. It was found that engineers are highly aware of BIM implementation barriers. In addition, it was concluded from the questionnaire that the biggest barrier is the lack of BIM training. Based on expert feedback, the study concluded with a number of recommendations on how to overcome the barriers of BIM utilization. This should prove useful to the construction industry stakeholders and can lead to significant changes to design and construction practices.Keywords: building information modeling (BIM), construction, information technology, challenges
Procedia PDF Downloads 2603916 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney
Authors: M. J. Geca, T. Tulwin, A. Majczak
Abstract:
On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: electric energy, photovoltaic system, fuel consumption, CO₂
Procedia PDF Downloads 109