Search results for: global innovation network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11068

Search results for: global innovation network

9658 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 201
9657 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase

Authors: Dengyu You, Alireza Kashani

Abstract:

This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.

Keywords: concrete 3D printing, staircase, sustainability, automation

Procedia PDF Downloads 105
9656 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues

Authors: Akram Waheb Nasef Alzordoky

Abstract:

The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 21
9655 IT and Security Experts' Innovation and Investment Front for IT-Entrepreneurship in Pakistan

Authors: Ahmed Mateen, Zhu Qingsheng, Muhammad Awais, Muhammad Yahya Saeed

Abstract:

This paper targets the rising factor of entrepreneurship innovation, which lacks in Pakistan as compared to the other countries or the regions like China, India, and Malaysia, etc. This is an exploratory and explanatory study. Major aspects have identified as the direction for the policymakers while highlighting the issues in true spirit. IT needs to be considered not only as a technology but also as itself growing as a new community. IT management processes are complex and broad, so generally requires extensive attention to the collective aspects of human variables, capital and technology. In addition, projects tend to have a special set of critical success factors, and if these are processed and given attention, it will improve the chances of successful implementation. This is only possible with state of the art intelligent decision support systems and accumulating IT staff to some extent in decision processes. This paper explores this issue carefully and discusses six issues to observe the implemented strength and possible enhancement.

Keywords: security and defense forces, IT-incentives, big IT-players, IT-entrepreneurial-culture

Procedia PDF Downloads 220
9654 Ethical Aspects of the Anti-Doping System Management in Poland and in Global Framework

Authors: Malgorzata Kurleto

Abstract:

This study is trying to analyse the organization of the anti-doping system globally (particularly in Poland). The analysis is going to show the concept of doping, indicating the types of doping, and list of banned substances and methods. The paper discusses ethical aspects of the global anti-doping system. The analysis is focusing on organization of global Anti-Doping Agency. The paper will try to describe the basic assumptions of regulations adopted by WADA, called "standards” as well organization and functioning of the Polish Anti-Doping Agency (including the legal basis: POLADA). The base for this discuss will be the Polish 2018 annual report, which shows the most important assumptions, implementation and the number of anti-doping proceedings conducted in Poland. The aim of this paper is to show ethical arguments on anti-doping management strategies.

Keywords: anti-doping, ethical dilemmas, sports doping, WADA, POLADA

Procedia PDF Downloads 130
9653 A Comparative Analysis of Global Minimum Variance and Naïve Portfolios: Performance across Stock Market Indices and Selected Economic Regimes Using Various Risk-Return Metrics

Authors: Lynmar M. Didal, Ramises G. Manzano Jr., Jacque Bon-Isaac C. Aboy

Abstract:

This study analyzes the performance of global minimum variance and naive portfolios across different economic periods, using monthly stock returns from the Philippine Stock Exchange Index (PSEI), S&P 500, and Dow Jones Industrial Average (DOW). The performance is evaluated through the Sharpe ratio, Sortino ratio, Jensen’s Alpha, Treynor ratio, and Information ratio. Additionally, the study investigates the impact of short selling on portfolio performance. Six-time periods are defined for analysis, encompassing events such as the global financial crisis and the COVID-19 pandemic. Findings indicate that the Naive portfolio generally outperforms the GMV portfolio in the S&P 500, signifying higher returns with increased volatility. Conversely, in the PSEI and DOW, the GMV portfolio shows more efficient risk-adjusted returns. Short selling significantly impacts the GMV portfolio during mid-GFC and mid-COVID periods. The study offers insights for investors, suggesting the Naive portfolio for higher risk tolerance and the GMV portfolio as a conservative alternative.

Keywords: portfolio performance, global minimum variance, naïve portfolio, risk-adjusted metrics, short-selling

Procedia PDF Downloads 96
9652 Heritage and the Sustainable Development Goals: Successful Practices and Lessons Learnt from the Uk’s Global Challenges Research Fund and Newton Research Portfolios

Authors: Francesca Giliberto

Abstract:

Heritage and culture, in general, plays a central role in addressing the complexity and broad variety of global development challenges, ranging from environmental degradation and refugee and humanitarian crisis to extreme poverty, food insecurity, persisting inequalities, and unsustainable urbanisation, just to mention some examples. Nevertheless, the potential of harnessing heritage to address global challenges has remained largely under-represented and underestimated in the most recent international development agenda adopted by the United Nations in 2015 (2030 Agenda). Among the 17 sustainable development goals (SDGs) and 169 associated targets established, only target 11.4 explicitly mentions heritage, stating that efforts should be strengthened “to protect and safeguard the world’s cultural and natural heritage in order to make our cities safe, resilient, and sustainable”. However, this global target continues to reflect a rather limited approach to heritage for development. This paper will provide a critical reflection on the contribution that using (tangible and intangible) heritage in international research can make to tackling global challenges and supporting the achievement of all the SDGs. It will present key findings and insights from the heritage strand of PRAXIS, a research project from the University of Leeds, which focuses on Arts and Humanities research across 300+ projects funded through the Global Challenges Research Fund and Newton Fund. In particular, this paper will shed light on successful practices and lessons learned from 87 research projects funded through the Global Challenges Research Fund and Newton Fund portfolios in 49 countries eligible for Official Development Assistance (ODA) between 2014 and 2021. Research data were collected through a desk assessment of project data available on UKRI Gateway to Research, online surveys, and qualitative interviews with research principal investigators and partners. The findings of this research provide evidence of how heritage and heritage research can foster innovative, interdisciplinary, inclusive, and transformative sustainable development and the achievement of the SDGs in ODA countries and beyond. This paper also highlights current challenges and research gaps that still need to be overcome to rethink current approaches and transform our development models to be more integrated, human-centred, and sustainable.

Keywords: global challenges, heritage, international research, sustainable development

Procedia PDF Downloads 74
9651 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems

Authors: Zongyao Sha

Abstract:

Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.

Keywords: vegetation phenology, growing season, NPP, correlation analysis

Procedia PDF Downloads 102
9650 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
9649 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
9648 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead

Authors: Behrooz Daneshmand

Abstract:

Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.

Keywords: software-defined networking, security, SDN, 5G/IMT-2020

Procedia PDF Downloads 99
9647 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 62
9646 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
9645 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications

Authors: Omojokun Gabriel Aju

Abstract:

Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.

Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)

Procedia PDF Downloads 358
9644 CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery.

Keywords: global warming, carbon dioxide (CO2), CO2 sequestration, enhance coal bed methane (ECBM)

Procedia PDF Downloads 505
9643 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
9642 A New Graph Theoretic Problem with Ample Practical Applications

Authors: Mehmet Hakan Karaata

Abstract:

In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.

Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring

Procedia PDF Downloads 386
9641 Islamic Banking in Ghana: Prospects and Challenges

Authors: Shaibu Ali, Sherif Heiman Shaban, Musah Ismaila, Imoro Alhassan, Yusif Ali

Abstract:

Purpose: Islamic banking and finance is one of the most rapidly growing segments of the global finance industry. Starting with the Dubai Islamic Bank in 1975, the number of Islamic financial institutions worldwide has shot up astronomically, to over three hundred, with operations in seventy-five countries and assets in excess of US$400 billion. The purpose of this study is to explore the prospects and challenges of Islamic banking introduction in a non-Islamic country like Ghana. Design/Methodology: Data for the study was collected via an expert opinion of three Islamic scholars on Islamic banking from Ghana. Findings: Findings from this study indicates some of the benefits of Islamic banking includes connecting financial markets and economic activity, promoting the principle of financial justice, greater stability, avoiding economic bubbles (and bursts) and reducing the impact of harmful products and practices. The study also identified lack of experts in various fields of Islamic banking, product innovation, moral hazard, and need for experienced staff in Islamic banking as some of the challenges to Islamic banking system’s introduction. Contribution: The study contributes to literature on Islamic banking from a non-Islamic country like Ghana.

Keywords: Islamic banking, Shari’ah, Riba, conventional banking

Procedia PDF Downloads 177
9640 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 543
9639 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.

Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis

Procedia PDF Downloads 365
9638 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education

Authors: Sereen Itani

Abstract:

As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.

Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges

Procedia PDF Downloads 384
9637 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 114
9636 Conceptualizing Personalized Learning: Review of Literature 2007-2017

Authors: Ruthanne Tobin

Abstract:

As our data-driven, cloud-based, knowledge-centric lives become ever more global, mobile, and digital, educational systems everywhere are struggling to keep pace. Schools need to prepare students to become critical-thinking, tech-savvy, life-long learners who are engaged and adaptable enough to find their unique calling in a post-industrial world of work. Recognizing that no nation can afford poor achievement or high dropout rates without jeopardizing its social and economic future, the thirty-two nations of the OECD are launching initiatives to redesign schools, generally under the banner of Personalized Learning or 21st Century Learning. Their intention is to transform education by situating students as co-enquirers and co-contributors with their teachers of what, when, and how learning happens for each individual. In this focused review of the 2007-2017 literature on personalized learning, the author sought answers to two main questions: “What are the theoretical frameworks that guide personalized learning?” and “What is the conceptual understanding of the model?” Ultimately, the review reveals that, although the research area is overly theorized and under-substantiated, it does provide a significant body of knowledge about this potentially transformative educational restructuring. For example, it addresses the following questions: a) What components comprise a PL model? b) How are teachers facilitating agency (voice & choice) in their students? c) What kinds of systems, processes and procedures are being used to guide the innovation? d) How is learning organized, monitored and assessed? e) What role do inquiry based models play? f) How do teachers integrate the three types of knowledge: Content, pedagogical and technological? g) Which kinds of forces enable, and which impede, personalizing learning? h) What is the nature of the collaboration among teachers? i) How do teachers co-regulate differentiated tasks? One finding of the review shows that while technology can dramatically expand access to information, expectations of its impact on teaching and learning are often disappointing unless the technologies are paired with excellent pedagogies in order to address students’ needs, interests and aspirations. This literature review fills a significant gap in this emerging field of research, as it serves to increase conceptual clarity that has hampered both the theorizing and the classroom implementation of a personalized learning model.

Keywords: curriculum change, educational innovation, personalized learning, school reform

Procedia PDF Downloads 223
9635 Education as a Global Business: An Overview of the Growth in International Students

Authors: Chinonso Jude Ugwu

Abstract:

This study examines education as a global business, primarily focusing on the boom of college students worldwide. It adopts a mixed-technique approach, using primary and secondary data sources. Primary data was obtained using questionnaires and interviews focusing on international college students, academic staff, and recruitment corporations from pre-determined universities in the United States, the United Kingdom, and Australia. The secondary information was collected from relevant literature, professional reports, and databases. The study ascertained that the boom in worldwide college students is a huge trend within the training enterprise, arising primarily from the growing call for better education worldwide. The studies additionally found that different factors are responsible for the decision of international students to consider studying abroad, such as high schooling satisfaction, cultural exposure, professional opportunities, and the popularity of universities. Furthermore, the study highlights the challenges college students face worldwide, including economic difficulties, social and cultural adjustments, and visa regulations. Based on the findings, the study concludes that Education as a Global Business is a profitable enterprise with substantial potential. However, universities and governments should handle global college students’ demanding situations by creating welcoming surroundings promoting diversity and inclusivity. The study recommends that universities put money into programs and offerings that assist worldwide college students’ welfare. Governments should ease visa regulations to inspire more extraordinary worldwide college students to observe abroad.

Keywords: education, business, profitability, global students

Procedia PDF Downloads 74
9634 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
9633 The Role Played by Awareness and Complexity through the Use of a Logistic Regression Analysis

Authors: Yari Vecchio, Margherita Masi, Jorgelina Di Pasquale

Abstract:

Adoption of Precision Agriculture (PA) is involved in a multidimensional and complex scenario. The process of adopting innovations is complex and social inherently, influenced by other producers, change agents, social norms and organizational pressure. Complexity depends on factors that interact and influence the decision to adopt. Farm and operator characteristics, as well as organizational, informational and agro-ecological context directly affect adoption. This influence has been studied to measure drivers and to clarify 'bottlenecks' of the adoption of agricultural innovation. Making decision process involves a multistage procedure, in which individual passes from first hearing about the technology to final adoption. Awareness is the initial stage and represents the moment in which an individual learns about the existence of the technology. 'Static' concept of adoption has been overcome. Awareness is a precondition to adoption. This condition leads to not encountering some erroneous evaluations, arose from having carried out analysis on a population that is only in part aware of technologies. In support of this, the present study puts forward an empirical analysis among Italian farmers, considering awareness as a prerequisite for adoption. The purpose of the present work is to analyze both factors that affect the probability to adopt and determinants that drive an aware individual to not adopt. Data were collected through a questionnaire submitted in November 2017. A preliminary descriptive analysis has shown that high levels of adoption have been found among younger farmers, better educated, with high intensity of information, with large farm size and high labor-intensive, and whose perception of the complexity of adoption process is lower. The use of a logit model permits to appreciate the weight played by the intensity of labor and complexity perceived by the potential adopter in PA adoption process. All these findings suggest important policy implications: measures dedicated to promoting innovation will need to be more specific for each phase of this adoption process. Specifically, they should increase awareness of PA tools and foster dissemination of information to reduce the degree of perceived complexity of the adoption process. These implications are particularly important in Europe where is pre-announced the reform of Common Agricultural Policy, oriented to innovation. In this context, these implications suggest to the measures supporting innovation to consider the relationship between various organizational and structural dimensions of European agriculture and innovation approaches.

Keywords: adoption, awareness, complexity, precision agriculture

Procedia PDF Downloads 138
9632 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 48
9631 Visualize Global Warming and Its Consequences Using Augmented Reality

Authors: K. R. Parvathy, R. Rao Bhavani , M. L. McLain, Kamal Bijlani, R. Jayakrishnan

Abstract:

Augmented Reality (AR) technology is considered to be an important emerging technology used in education today. One potentially key use of AR in education is to teach socio-scientific issues (SSI), topics that inure students towards social conscience and critical thinking. This work uses multiple markers and virtual buttons that interact with each other, creating a life-like visual spectacle. Learning about issues such as global warming by using AR technology, students will have an increased sense of experiencing immersion, immediacy, and presence, thereby enhancing their learning as well as likely improving their ability to make better informed decisions about considerations of such issues. Another advantage of AR is that it is a low cost technology, making it advantageous for educators to adapt to their classrooms. Also in this work we compare the effectiveness of AR versus ordinary video by polling a group of students to assess the content understandability, effectiveness and interaction of both the delivery methods.

Keywords: augmented reality, global warming, multiple markers, virtual buttons

Procedia PDF Downloads 400
9630 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 564
9629 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation

Authors: Ge Zheng, Jun Peng

Abstract:

Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.

Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient

Procedia PDF Downloads 169