Search results for: fund transfer pricing
1988 The Role of Home Composting in Waste Management Cost Reduction
Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti
Abstract:
Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.Keywords: compost, home compost, reducing waste, waste management
Procedia PDF Downloads 4281987 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace
Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini
Abstract:
Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.Keywords: energy cunsumption, energy recovery, modeling, energy eficiency
Procedia PDF Downloads 731986 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system
Procedia PDF Downloads 1221985 Challenges for a WPT 4 Waiting Lane Concept - Laboratory and Practical Experience
Authors: Julia Langen
Abstract:
This article describes the challenges of a wireless charging system for a cab waiting lane in a public space and presents a concept for solving them. In this concept, multiple cabs can be charged simultaneously and during stopping and rolling. Particular technical challenges are a coil topology that meets the EMF requirements and an intelligent control concept that allows the individual coil segments to be switched on and off. The charging concept explained here is currently being implemented as a pilot project, so that initial results on the operation can be presented.Keywords: charge lane, inductive charging solution, smart city, wireless power transfer
Procedia PDF Downloads 1761984 Development of Automated Quality Management System for the Management of Heat Networks
Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov
Abstract:
Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets
Procedia PDF Downloads 3671983 Effectiveness of Climate Smart Agriculture in Managing Field Stresses in Robusta Coffee
Authors: Andrew Kirabira
Abstract:
This study is an investigation into the effectiveness of climate-smart agriculture (CSA) technologies in improving productivity through managing biotic and abiotic stresses in the coffee agroecological zones of Uganda. The motive is to enhance farmer livelihoods. The study was initiated as a result of the decreasing productivity of the crop in Uganda caused by the increasing prevalence of pests, diseases and abiotic stresses. Despite 9 years of farmers’ application of CSA, productivity has stagnated between 700kg -800kg/ha/yr which is only 26% of the 3-5tn/ha/yr that CSA is capable of delivering if properly applied. This has negatively affected the incomes of the 10.6 million people along the crop value chain which has in essence affected the country’s national income. In 2019/20 FY for example, Uganda suffered a deficit of $40m out of singularly the increasing incidence of one pest; BCTB. The amalgamation of such trends cripples the realization of SDG #1 and #13 which are the eradication of poverty and mitigation of climate change, respectively. In probing CSA’s effectiveness in curbing such a trend, this study is guided by the objectives of; determining the existing farmers’ knowledge and perceptions of CSA amongst the coffee farmers in the diverse coffee agro-ecological zones of Uganda; examining the relationship between the use of CSA and prevalence of selected coffee pests, diseases and abiotic stresses; ascertaining the difference in the market organization and pricing between conventionally and CSA produced coffee; and analyzing the prevailing policy environment concerning the use of CSA in coffee production. The data collection research design is descriptive in nature; collecting data from farmers and agricultural extension workers in the districts of Ntungamo, Iganga and Luweero; each of these districts representing a distinct coffee agroecological zone. Policy custodian officers at district, cooperatives and at the crop’s overseeing national authority were also interviewed.Keywords: climate change, food security, field stresses, Productivity
Procedia PDF Downloads 571982 An Assessment on the Effect of Participation of Rural Woman on Sustainable Rural Water Supply in Yemen
Authors: Afrah Saad Mohsen Al-Mahfadi
Abstract:
In rural areas of developing countries, participation of all stakeholders in water supply projects is an important step towards further development. As most of the beneficiaries are women, it is important that they should be involved to achieve successful and sustainable water supply projects. Women are responsible for the management of water both inside and outside home, and often spend more than six-hours a day fetching drinking water from distant water sources. The problem is that rural women play a role of little importance in the water supply projects’ phases in rural Yemen. Therefore, this research aimed at analyzing the different reasons of their lack of participation in projects and in what way a full participation -if achieved- could contribute to sustainable water supply projects in the rural mountainous areas in Yemen. Four water supply projects were selected as a case study in Al-Della'a Alaala sub-district in the Al-Mahweet governorate, two of them were implemented by the Social Fund and Development (SFD), while others were implemented by the General Authority for Rural Water Supply Projects (GARWSSP). Furthermore, the successful Al-Galba project, which is located in Badan district in Ibb governorate, was selected for comparison. The rural women's active participation in water projects have potential consequences including continuity and maintenance improvement, equipment security, and improvement in the overall health and education status of these areas. The majority of respondents taking part in GARWSSP projects estimated that there is no reason to involve women in the project activities. In the comparison project - in which a woman worked as a supervisor and implemented the project – all respondents indicated that the participation of women is vital for sustainability. Therefore, the results of this research are intended to stimulate rural women's participation in the mountainous areas of Yemen.Keywords: assessment, rural woman, sustainability, water management
Procedia PDF Downloads 6931981 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long
Abstract:
Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.Keywords: 3D fiber, void formation, RTM, process modelling
Procedia PDF Downloads 961980 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary
Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet
Abstract:
The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.Keywords: dry conservation, optimization, sizing, water station
Procedia PDF Downloads 2621979 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump
Authors: Ravi Verma
Abstract:
Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity
Procedia PDF Downloads 901978 Conceptual Design of Suction Cup Lifting System
Authors: Mohammed Aijaz
Abstract:
In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.Keywords: designing, mechanical, engineering, suction
Procedia PDF Downloads 961977 Exploring Social and Economic Barriers in Adoption and Expansion of Agricultural Technologies in Woliatta Zone, Southern Ethiopia
Authors: Akalework Mengesha
Abstract:
The adoption of improved agricultural technologies has been connected with higher earnings and lower poverty, enhanced nutritional status, lower staple food prices, and increased employment opportunities for landless laborers. The adoption and extension of the technologies are vastly crucial in that it enables the countries to achieve the millennium development goals (MDG) of reducing extreme poverty and hunger. There are efforts which directed to the enlargement and provision of modern crop varieties in sub-Saharan Africa in the past 30 years. Nevertheless, by and large, the adoption and expansion of rates for improved technologies have insulated behind other regions. This research aims to assess social and economic barriers in the adoption and expansion of agricultural technologies by local communities living around a private agricultural farm in Woliatta Zone, Southern Ethiopia. The study has been carried out among rural households which are located in the three localities selected for the study in the Woliatta zone. Across sectional mixed method, the design was used to address the study objective. The qualitative method was employed (in-depth interview, key informant, and focus group discussion) involving a total of 42 in-depth informants, 17 key-informant interviews, 2 focus group discussions comprising of 10 individuals in each group through purposive sampling techniques. The survey method was mainly used in the study to examine the impact of attitudinal, demographic, and socioeconomic variables on farmers’ adoption of agricultural technologies for quantitative data. The finding of the study revealed that Amibara commercial farm has not made a resolute and well-organized effort to extend agricultural technology to the surrounding local community. A comprehensive agricultural technology transfer scheme hasn’t been put in place by the commercial farm ever since it commenced operating in the study area. Besides, there is an ongoing conflict of interest between the farm and the community, which has kept on widening through time, bounds to be irreversible.Keywords: adoption, technology transfer, agriculture, barriers
Procedia PDF Downloads 1531976 A Descriptive Study of the Characteristics of Introductory Accounting Courses Offered by Community Colleges
Authors: Jonathan Nash, Allen Hartt, Catherine Plante
Abstract:
In many nations, community colleges, or similar institutions, play a crucial role in higher education. For example, in the United States more than half of all undergraduate students enroll in a community college at some point during their academic career. Similar statistics have been reported for Australia and Canada. Recognizing the important role these institutions play in educating future accountants, the American Accounting Association has called for research that contributes to a better understanding of these members of the academic community. Although previous literature has shown that community colleges and 4-year institutions differ on many levels, the extant literature has provided data on the characteristics of introductory accounting courses for four-year institutions but not for community colleges. We fill a void in the literature by providing data on the characteristics of introductory accounting courses offered by community colleges in the United States. Data are collected on several dimensions including: course size and staffing, pedagogical orientation, standardization of course elements, textbook selection, and use of technology-based course management tools. Many of these dimensions have been used in previous research examining four-year institutions thereby facilitating comparisons. The resulting data should be of interest to instructors, regulators and administrators, researchers, and the accounting profession. The data provide information on the introductory accounting courses completed by the average community college student which can help instructors identify areas where transfer students’ experiences might differ from their contemporaries at four-year colleges. Regulators and administrators may be interested in the differences between accounting courses offered by two- and four-year institutions when implementing standardized transfer programs. Researchers might use the data to motivate future research into whether differences between two- and four-year institutions affect outcomes like the probability of students choosing to major in accounting and their performance within the major. Accounting professionals may use our findings as a springboard for facilitating discussions related to the accounting labor supply.Keywords: Accounting curricula, Community college, Descriptive study, Introductory accounting
Procedia PDF Downloads 1011975 Thermoelectric Generators as Alternative Source for Electric Power
Authors: L. C. Ding, Bradley G. Orr, K. Rahauoi, S. Truza, A. Date, A. Akbarzadeh
Abstract:
The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.Keywords: electric power, heat transfer, renewable energy, thermoelectric generator
Procedia PDF Downloads 2821974 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 6581973 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 1351972 The Impact of Diesel Exhaust Particles on Tight Junction Proteins on Nose and Lung in a Mouse Model
Authors: Kim Byeong-Gon, Lee Pureun-Haneul, Hong Jisu, Jang An-Soo
Abstract:
Background: Diesel exhaust particles (DEPs) lead to trigger airway hyperresponsiveness (AHR) and airway dysfunction or inflammation in respiratory systems. Whether tight junction protein changes can contribute to development or exacerbations of airway diseases remain to be clarified. Objective: The aim of this study was to observe the effect of DEP on tight junction proteins in one airway both nose and lung in a mouse model. Methods: Mice were treated with saline (Sham) and exposed to 100 μg/m³ DEPs 1 hour a day for 5 days a week for 4 weeks and 8 weeks in a closed-system chamber attached to a ultrasonic nebulizer. Airway hyperresponsiveness (AHR) was measured and bronchoalveolar lavage (BAL) fluid, nasal lavage (NAL) fluid, lung and nasal tissue was collected. The effects of DEP on tight junction proteins were estimated using western blot, immunohistochemical in lung and nasal tissue. Results: Airway hyperresponsiveness and number of inflammatory cells were higher in DEP exposure group than in control group, and were higher in 4 and 8 weeks model than in control group. The expression of tight junction proteins CLND4, -5, and -17 in both lung and nasal tissue were significantly increased in DEP exposure group than in the control group. Conclusion: These results suggesting that CLDN4, -5 and -17 may be involved in the airway both nose and lung, suggesting that air pollutants cause to disruption of epithelial and endothelial cell barriers. Acknowledgment: This research was supported by Korea Ministry of Environment (MOE) as 'The Environmental Health Action Program' (2016001360009) and Soonchunhyang University Research Fund.Keywords: diesel exhaust particles, air pollutant, tight junction, Claudin, Airway inflammation
Procedia PDF Downloads 1441971 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure
Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou
Abstract:
A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure
Procedia PDF Downloads 3421970 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria
Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu
Abstract:
An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification
Procedia PDF Downloads 4411969 Beyond Information Failure and Misleading Beliefs in Conditional Cash Transfer Programs: A Qualitative Account of Structural Barriers Explaining Why the Poor Do Not Invest in Human Capital in Northern Mexico
Authors: Francisco Fernandez de Castro
Abstract:
The Conditional Cash Transfer (CCT) model gives monetary transfers to beneficiary families on the condition that they take specific education and health actions. According to the economic rationale of CCTs the poor need incentives to invest in their human capital because they are trapped by a lack of information and misleading beliefs. If left to their own decision, the poor will not be able to choose what is in their best interests. The basic assumption of the CCT model is that the poor need incentives to take care of their own education and health-nutrition. Due to the incentives (income cash transfers and conditionalities), beneficiary families are supposed to attend doctor visits and health talks. Children would stay in the school. These incentivized behaviors would produce outcomes such as better health and higher level of education, which in turn will reduce poverty. Based on a grounded theory approach to conduct a two-year period of qualitative data collection in northern Mexico, this study shows that this explanation is incomplete. In addition to the information failure and inadequate beliefs, there are structural barriers in everyday life of households that make health-nutrition and education investments difficult. In-depth interviews and observation work showed that the program takes for granted local conditions in which beneficiary families should fulfill their co-responsibilities. Data challenged the program’s assumptions and unveiled local obstacles not contemplated in the program’s design. These findings have policy and research implications for the CCT agenda. They bring elements for late programming due to the gap between the CCT strategy as envisioned by policy designers, and the program that beneficiary families experience on the ground. As for research consequences, these findings suggest new avenues for scholarly work regarding the causal mechanisms and social processes explaining CCT outcomes.Keywords: conditional cash transfers, incentives, poverty, structural barriers
Procedia PDF Downloads 1131968 The Prospect of Income Contingent Loan in Malaysia Higher Education Financing Using Deterministic and Stochastic Methods in Modelling Income
Authors: Syaza Isma, Timothy Higgins
Abstract:
In Malaysia, increased take-up rates of tertiary student borrowing, and reliance on retirement savings to fund children's education show the importance of public higher education financing schemes (PTPTN). PTPTN has been operating for 2 decades now; however, there are some critical issues and challenges that include low loan recovery and loan default that suggest a detailed consideration of student loan/financing scheme alternatives is crucial. In addition, the decline in funding level per student following introduction of the new PTPTN full and partial loan scheme has raised ongoing concerns over the sustainability of the scheme to provide continuous financial assistance to students in tertiary education. This research seeks to assess these issues that put greater efficiency in an effort to ensure equitable access to student funding for current and future generations. We explore the extent of repayment hardship under the current loan arrangements that presumably led to low recovery from the borrowers, particularly low-income graduates. The concept of manageable debt exists in the design of income-contingent repayment schemes, as practiced in Australia, New Zealand, UK, Hungary, USA (in limited form), the Netherlands, and South Korea. Can Income Contingent Loans (ICL) offer the best practice for an education financing scheme, and address the issue of repayment hardship and concurrently, can a properly designed ICL scheme provide a solution to the current issues and challenges facing Malaysia student financing? We examine the different potential ICL models using deterministic and stochastic approach to simulate income of graduates.Keywords: deterministic, income contingent loan, repayment burden, simulation, stochastic
Procedia PDF Downloads 2301967 A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England
Authors: Steve Fish, Chris Lambert
Abstract:
Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.Keywords: regional business support, rural business support, university-industry collaboration, collaborative R&D, SMEs, knowledge exchange
Procedia PDF Downloads 1211966 The Effects of the Introduction of a One-day Waiting Period on Absences for Ordinary Illness of Public Employees
Authors: Mohamed Ali Ben Halima, Malik Koubi, Joseph Lanfranchi, Yohan Wloczysiak
Abstract:
This article assesses the consequences on the frequency and duration of ordinary sick leave of the January 2012 and 2018 reforms modifying the scope of sick leave reimbursement in the French civil service. These reforms introduce a one-day waiting period which removes the compensation for the first day of ordinary sick leave. In order to evaluate these reforms, we use an administrative database from the National Pension Fund for local public employees (FPT). The first important result of our data analysis is that the one-day waiting period was not introduced at the same time in the French Local Public Service establishments, or even never in some. This peculiarity allows for an identification strategy using a difference-in-differences method based on the definition at each date of groups of employees treated and not treated by the reform, since establishments that apply the one-day waiting period coexist with establishments that do not apply it. Two types of estimators are used for this evaluation: individual and time fixed effects estimators and DIDM estimators which correct for the biases of the Two Way Fixed Effects one. The results confirm that the change in the sick pay system decreases the probability of having at least one ordinary sick leave as well as the number and duration of these episodes. On the other hand, the estimates show that longer leave episodes are not less affected than shorter ones. Finally, the validity tests of the estimators support the results obtained for the second period of 2018-2019, but suggest estimation biases for the period 2012-2013. The extent to which the endogeneity of the choices of implementation of the reform at the local level impact these estimates needs to be further tested.Keywords: sick leave, one-day waiting period, territorial civil service, public policy evaluation
Procedia PDF Downloads 831965 Experimental Study on the Heating Characteristics of Transcritical CO₂ Heat Pumps
Authors: Lingxiao Yang, Xin Wang, Bo Xu, Zhenqian Chen
Abstract:
Due to its outstanding environmental performance, higher heating temperature and excellent low-temperature performance, transcritical carbon dioxide (CO₂) heat pumps are receiving more and more attention. However, improperly set operating parameters have a serious negative impact on the performance of the transcritical CO₂ heat pump due to the properties of CO₂. In this study, the heat transfer characteristics of the gas cooler are studied based on the modified “three-stage” gas cooler, then the effect of three operating parameters, compressor speed, gas cooler water-inlet flowrate and gas cooler water-inlet temperature, on the heating process of the system are investigated from the perspective of thermal quality and heat capacity. The results shows that: In the heat transfer process of gas cooler, the temperature distribution of CO₂ and water shows a typical “two region” and “three zone” pattern; The rise in the cooling pressure of CO₂ serves to increase the thermal quality on the CO₂ side of the gas cooler, which in turn improves the heating temperature of the system; Nevertheless, the elevated thermal quality on the CO₂ side can exacerbate the mismatch of heat capacity on both sides of the gas cooler, thereby adversely affecting the system coefficient of performance (COP); Furthermore, increasing compressor speed mitigates the mismatch in heat capacity caused by elevated thermal quality, which is exacerbated by decreasing gas cooler water-inlet flowrate and rising gas cooler water-inlet temperature; As a delegate, the varying compressor speed results in a 7.1°C increase in heating temperature within the experimental range, accompanied by a 10.01% decrease in COP and an 11.36% increase in heating capacity. This study can not only provide an important reference for the theoretical analysis and control strategy of the transcritical CO₂ heat pump, but also guide the related simulation and the design of the gas cooler. However, the range of experimental parameters in the current study is small and the conclusions drawn are not further analysed quantitatively. Therefore, expanding the range of parameters studied and proposing corresponding quantitative conclusions and indicators with universal applicability could greatly increase the practical applicability of this study. This is also the goal of our next research.Keywords: transcritical CO₂ heat pump, gas cooler, heat capacity, thermal quality
Procedia PDF Downloads 211964 Comparison of the Results of a Parkinson’s Holter Monitor with Patient Diaries, in Real Conditions of Use: A Sub-Analysis of the MoMoPa-EC Clinical Trial
Authors: Alejandro Rodríguez-Molinero, Carlos Pérez-López, Jorge Hernández-Vara, Àngels Bayes-Rusiñol, Juan Carlos Martínez-Castrillo, David A. Pérez-Martínez
Abstract:
Background: Monitoring motor symptoms in Parkinson's patients is often a complex and time-consuming task for clinicians, as Hauser's diaries are often poorly completed by patients. Recently, new automatic devices (Parkinson's holter: STAT-ON®) have been developed capable of monitoring patients' motor fluctuations. The MoMoPa-EC clinical trial (NCT04176302) investigates which of the two methods produces better clinical results. In this sub-analysis, the concordance between both methods is analyzed. Methods: In the MoMoPa-EC clinical trial, 164 patients with moderate-severe Parkinson's disease and at least two hours a day of Off will be included. At the time of patient recruitment, all of them completed a seven-day motor fluctuation diary at home (Hauser’s diary) while wearing the Parkinson's holter. In this sub-analysis, 71 patients with complete data for the purpose of this comparison were included. The intraclass correlation coefficient was calculated between the patient diary entries and the Parkinson's holter data in terms of time On, Off, and time with dyskinesias. Results: The intra-class correlation coefficient of both methods was 0.57 (95% CI: 0.3-0.74) for daily time in Off (%), 0.48 (95% CI: 0.14-0.68) for daily time in On (%), and 0.37 (95% CI %: -0.04-0.62) for daily time with dyskinesias (%). Conclusions: Both methods have a moderate agreement with each other. We will have to wait for the results of the MoMoPa-EC project to estimate which of them has the greatest clinical benefits. Acknowledgment: This work is supported by AbbVie S.L.U, the Instituto de Salud Carlos III [DTS17/00195], and the European Fund for Regional Development, 'A way to make Europe'.Keywords: Parkinson, sensor, motor fluctuations, dyskinesia
Procedia PDF Downloads 2331963 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition
Authors: Kyung Suk Cho, Heung Youl Kim
Abstract:
The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer
Procedia PDF Downloads 2281962 Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover
Authors: M. Sagarika, M. Chandra Sekhar
Abstract:
Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane.Keywords: anaerobic digestion, premixing methods, methane yield, corn stover, volatile solids
Procedia PDF Downloads 2341961 Assessment of Air Pollution in Kindergartens due to Indoor Radon Concentrations
Authors: Jana Djounova
Abstract:
The World Health Organization proposes an average annual reference level of 100 Bq/m³ to minimize health risks due to radon exposure in buildings. However, if this cannot be achieved under the country's specific conditions, the chosen reference level should not exceed 300 Bq/m³. The World Health Organization recognized the relationship between indoor radon exposure and lung cancer, even at low doses. Radon in buildings is one of the most important indoor air pollutants, with harmful effects on the health of the population and especially children. This study presents the assessment of indoor radon concentration as air pollution and analyzes the exposure to radon of children and workers. Assessment of air pollution and exposure to indoor radon concentrations under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 in kindergartens in two districts of Bulgaria (Razgrad and Silistra). Kindergartens were considered for the following reasons: 1these buildings are generally at the ground and/or the first floor, where radon concentration is generally higher than at upper floors; 2these buildings are attended by children, a population generally considered more sensitive to ionizing radiation, although little data is available for radon exposure. The measurements of indoor radon concentrations were performed with passive methods (CR-39 track detectors) for the period from February to May 2015. One hundred fifty-six state kindergartens on the territories of two districts in Bulgaria have been studied. The variations of radon in the children's premises vary from 9 to 1087 Bq/m³. The established arithmetic mean value of radon levels in the kindergartens in Silistra is 139 Bq/m³ and in Razgrad 152 Bq/m³, respectively. The percentage of kindergarteners, where the radon in premises exceeds the Bulgarian reference level of 300 Bq/m³, was 19%. The exposure of children and workers in those kindergartens is high, so remediation measures of air pollution had been recommended. The difference in radon concentration in kindergartens in two districts was statistically analyzed to assess the influence of geography and geology and the differenceKeywords: air pollution, radon, kindergartens, detectors
Procedia PDF Downloads 2001960 Supporting Women's Economic Development in Rural Papua New Guinea
Authors: Katja Mikhailovich, Barbara Pamphilon
Abstract:
Farmer training in Papua New Guinea has focused mainly on technology transfer approaches. This has primarily benefited men and often excluded women whose literacy, low education and role in subsistence crops has precluded participation in formal training. The paper discusses an approach that uses both a brokerage model of agricultural extension to link smallholders with private sector agencies and an innovative family team’s approach that aims to support the economic empowerment of women in families and encourages sustainable and gender equitable farming and business practices.Keywords: women, economic development, agriculture, training
Procedia PDF Downloads 3911959 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate
Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed
Abstract:
The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate
Procedia PDF Downloads 424