Search results for: carbon capture and utilization (CCU)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5738

Search results for: carbon capture and utilization (CCU)

4328 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 146
4327 The Statistical Significant of Adsorbents for Effective Zn(II) Ions Removal

Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana

Abstract:

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d≈15 mm). The obtained values of adsorption efficiency was subjected to the independent samples t-test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets size (d≈15 mm) and activated carbon (|t|= 6.909), natural zeolite (|t|= 10.380), mixture of activated carbon and natural zeolite (|t|= 9.865), bentonite (|t|= 6.159), fired clay (|t|= 6.641), fired clay pellets size (d≈5 mm) (|t|= 6.678), fired clay pellets size (d≈8 mm) (|t|= 3.422), respectively.

Keywords: Adsorption efficiency, adsorbent, statistical analysis, zinc ion.

Procedia PDF Downloads 373
4326 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 115
4325 A DOE Study of Ultrasound Intensified Removal of Phenol

Authors: P. R. Rahul, A. Kannan

Abstract:

Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors.

Keywords: ultrasound, adsorption, granulated activated carbon, phenol

Procedia PDF Downloads 273
4324 HIV Incidence among Men Who Have Sex with Men Measured by Pooling Polymerase Chain Reaction, and Its Comparison with HIV Incidence Estimated by BED-Capture Enzyme-Linked Immunosorbent Assay and Observed in a Prospective Cohort

Authors: Mei Han, Jinkou Zhao, Yuan Yao, Liangui Feng, Xianbin Ding, Guohui Wu, Chao Zhou, Lin Ouyang, Rongrong Lu, Bo Zhang

Abstract:

To compare the HIV incidence estimated using BED capture enzyme linked immunosorbent assay (BED-CEIA) and observed in a cohort against the HIV incidence among men who have sex with men (MSM) measured by pooling polymerase chain reaction (pooling-PCR). A total of 617 MSM subjects were included in a respondent driven sampling survey in Chongqing in 2008. Among the 129 that were tested HIV antibody positive, 102 were defined with long-term infection, 27 were assessed for recent HIV infection (RHI) using BED-CEIA. The remaining 488 HIV negative subjects were enrolled to the prospective cohort and followed-up every 6 months to monitor HIV seroconversion. All of the 488 HIV negative specimens were assessed for acute HIV infection (AHI) using pooling-PCR. Among the 488 negative subjects in the open cohort, 214 (43.9%) were followed-up for six months, with 107 person-years of observation and 14 subjects seroconverted. The observed HIV incidence was 12.5 per 100 person-years (95% CI=9.1-15.7). Among the 488 HIV negative specimens, 5 were identified with acute HIV infection using pooling-PCR at an annual rate of 14.02% (95% CI=1.73-26.30). The estimated HIV-1 incidence was 12.02% (95% CI=7.49-16.56) based on BED-CEIA. The HIV incidence estimated with three different approaches was different among subgroups. In the highly HIV prevalent MSM, it costs US$ 1724 to detect one AHI case, while detection of one case of RHI with BED assay costs only US$ 42. Three approaches generated comparable and high HIV incidences, pooling PCR and prospective cohort are more close to the true level of incidence, while BED-CEIA seemed to be the most convenient and economical approach for at-risk population’s HIV incidence evaluation at the beginning of HIV pandemic. HIV-1 incidences were alarmingly high among MSM population in Chongqing, particularly within the subgroup under 25 years of age and those migrants aged between 25 to 34 years.

Keywords: BED-CEIA, HIV, incidence, pooled PCR, prospective cohort

Procedia PDF Downloads 397
4323 Tempo-Spatial Pattern of Progress and Disparity in Child Health in Uttar Pradesh, India

Authors: Gudakesh Yadav

Abstract:

Uttar Pradesh is one of the poorest performing states of India in terms of child health. Using data from the three round of NFHS and two rounds of DLHS, this paper attempts to examine tempo-spatial change in child health and care practices in Uttar Pradesh and its regions. Rate-ratio, CI, multivariate, and decomposition analysis has been used for the study. Findings demonstrate that child health care practices have improved over the time in all regions of the state. However; western and southern region registered the lowest progress in child immunization. Nevertheless, there is no decline in prevalence of diarrhea and ARI over the period, and it remains critically high in the western and southern region. These regions also poorly performed in giving ORS, diarrhoea and ARI treatment. Public health services are least preferred for diarrhoea and ARI treatment. Results from decomposition analysis reveal that rural area, mother’s illiteracy and wealth contributed highest to the low utilization of the child health care practices consistently over the period of time. The study calls for targeted intervention for vulnerable children to accelerate child health care service utilization. Poor performing regions should be targeted and routinely monitored on poor child health indicators.

Keywords: Acute Respiratory Infection (ARI), decomposition, diarrhea, inequality, immunization

Procedia PDF Downloads 284
4322 Selective Adsorption of Anionic Textile Dyes with Sustainable Composite Materials Based on Physically Activated Carbon and Basic Polyelectrolytes

Authors: Mari Carmen Reyes Angeles, Dalia Michel Reyes Villeda, Ana María Herrera González

Abstract:

This work reports the design and synthesis of two composite materials based on physically activated carbon and basic polyelectrolytes useful in the adsorption of textile dyes present in aqueous solutions and wastewater. The synthesis of basic polyelectrolytes poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) was made by means of free radical polymerization. The carbon made from prickly pear peel (CarTunaF) was thermally activated in the presence of combustion gases. Composite materials CarTunaF2VP and CarTunaF4VP were obtained from CarTunaF and polybasic polyelectrolytes P2VP and P4VP with a ratio of 67:33 wt. The structure of each polyelectrolyte, P2VP, and P4VP, was elucidated by means of the FTIR and 1H NMR spectrophotometric techniques. Their thermal stability was evaluated using TGA. The characterization of CarTunaF and composite materials CarTunaF2VP and CarTunaF4VP was made by means of FTIR, TGA, SEM, and N2 adsorption. The adsorptive capacities of the polyelectrolytes and the composite materials were evaluated by adsorption of direct dyes present in aqueous solutions. The polyelectrolytes removed between 90 and 100% of the dyes, and the composite materials removed between 68 and 93% of the dyes. Using the four adsorbents P2VP, P4VP, CarTuna2VP, and CarTuna4VP, it was observed that the dyes studied, Direct Blue 80, Direct Turquoise 86, and Direct Orange 26, were adsorbed in the range between 46.1 and 188.7mg∙g-1 by means of electrostatic interactions between the anionic groups in the dyes with the cationic groups in the adsorbents. By using adsorbent materials in the treatment of wastewater from the textile industry, an improvement in the quality of the water was observed by decreasing its pH, COD, conductivity, and color considerably

Keywords: adsorption, anionic dyes, composite, polyelectrolytes

Procedia PDF Downloads 85
4321 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 243
4320 Experimental Investigation for Reducing Emissions in Maritime Industry

Authors: Mahmoud Ashraf Farouk

Abstract:

Shipping transportation is the foremost imperative mode of transportation in universal coordination. At display, more than 2/3 of the full worldwide exchange volume accounts for shipping transportation. Ships are utilized as an implies of marine transportation, introducing large-power diesel motors with exhaust containing nitrogen oxide NOx, sulfur oxide SOx, carbo di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO which are the most dangerous contaminants found in exhaust gas from ships. Ships radiating a large amount of exhaust gases have become a significant cause of pollution in the air in coastal areas, harbors and oceans. Therefore, IMO (the International Maritime Organization) has established rules to reduce this emission. This experiment shows the measurement of the exhaust gases emitted from the Aida IV ship's main engine using marine diesel oil fuel (MDO). The measurement is taken by the Sensonic2000 device on 85% load, which is the main sailing load. Moreover, the paper studies different emission reduction technologies as an alternative fuel, which as liquefied natural gas (LNG) applied to the system and reduction technology which is represented as selective catalytic reduction technology added to the marine diesel oil system (MDO+SCR). The experiment calculated the amount of nitrogen oxide NOx, sulfur oxide SOx, carbon-di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO because they have the most effect on the environment. The reduction technologies are applied on the same ship engine with the same load. Finally, the study found that MDO+SCR is the more efficient technology for the Aida IV ship as a training and supply ship due to low consumption and no need to modify the engine. Just add the SCR system to the exhaust line, which is easy and cheapest. Moreover, the differences between them in the emission are not so big.

Keywords: marine, emissions, reduction, shipping

Procedia PDF Downloads 60
4319 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 354
4318 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus

Authors: Mrinmoy Majumder, Apu Kumar Saha

Abstract:

The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.

Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering

Procedia PDF Downloads 460
4317 LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane

Authors: Xianglei Yin, Shen Wang, Baoyi Wang, Laihong Shen

Abstract:

Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process.

Keywords: chemical looping partial oxidation of methane, LaMnO₃₊δ, Ni doping, syngas, carbon deposition

Procedia PDF Downloads 86
4316 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 15
4315 Model of Community Management for Sustainable Utilization

Authors: Luedech Girdwichai, Withaya Mekhum

Abstract:

This research intended to develop the model of community management for sustainable utilization by investigating on 2 groups of population, the family heads and the community management team. The population of the former group consisted of family heads from 511 families in 12 areas to complete the questionnaires which were returned at 479 sets. The latter group consisted of the community management team of 12 areas with 1 representative from each area to give the interview. The questionnaires for the family heads consisted of 2 main parts; general information such as occupations, etc. in the form of checklist. The second part dealt with the data on self reliance community development based on 4P Framework, i.e., People (human resource) development, Place (area) development, Product (economic and income source) development, and Plan (community plan) development in the form of rating scales. Data in the 1st part were calculated to find frequency and percentage while those in the 2nd part were analyzed to find arithmetic mean and SD. Data from the 2nd group of population or the community management team were derived from focus group to find factors influencing successful management together with the in depth interview which were analyzed by descriptive statistics. The results showed that 479 family heads reported that the aspect on the implementation of community plan to self reliance community activities based on Sufficient Economy Philosophy and the 4P was at the average of 3.28 or moderate level. When considering in details, it was found that the 1st aspect was on the area development with the mean of 3.71 or high level followed by human resource development with the mean of 3.44 or moderate level, then, economic and source of income development with the mean of 3.09 or moderate level. The last aspect was community plan development with the mean of 2.89. The results from the small group discussion revealed some factors and guidelines for successful community management as follows: 1) on the People (human resource) development aspect, there was a project to support and develop community leaders. 2) On the aspect of Place (area) development, there was a development on conservative tourism areas. 3) On the aspect of Product (economic and source of income) development, the community leaders promoted the setting of occupational group, saving group, and product processing group. 4) On the aspect of Plan (community plan) development, there was a prioritization through public hearing.

Keywords: model of community management, sustainable utilization, family heads, community management team

Procedia PDF Downloads 323
4314 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 112
4313 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System

Authors: Rajat Raj, Rohini S. Hallikar

Abstract:

The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.

Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion

Procedia PDF Downloads 148
4312 The Impact of PM-Based Regulations on the Concentration and Sources of Fine Organic Carbon in the Los Angeles Basin from 2005 to 2015

Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Sina Taghvaee, Constantinos Sioutas

Abstract:

A significant portion of PM₂.₅ mass concentration is carbonaceous matter (CM), which majorly exists in the form of organic carbon (OC). Ambient OC originates from a multitude of sources and plays an important role in global climate effects, visibility degradation, and human health. In this study, positive matrix factorization (PMF) was utilized to identify and quantify the long-term contribution of PM₂.₅ sources to total OC mass concentration in central Los Angeles (CELA) and Riverside (i.e., receptor site), using the chemical speciation network (CSN) database between 2005 and 2015, a period during which several state and local regulations on tailpipe emissions were implemented in the area. Our PMF resolved five different factors, including tailpipe emissions, non-tailpipe emissions, biomass burning, secondary organic aerosol (SOA), and local industrial activities for both sampling sites. The contribution of vehicular exhaust emissions to the OC mass concentrations significantly decreased from 3.5 µg/m³ in 2005 to 1.5 µg/m³ in 2015 (by about 58%) at CELA, and from 3.3 µg/m³ in 2005 to 1.2 µg/m³ in 2015 (by nearly 62%) at Riverside. Additionally, SOA contribution to the total OC mass, showing higher levels at the receptor site, increased from 23% in 2005 to 33% and 29% in 2010 and 2015, respectively, in Riverside, whereas the corresponding contribution at the CELA site was 16%, 21% and 19% during the same period. The biomass burning maintained an almost constant relative contribution over the whole period. Moreover, while the adopted regulations and policies were very effective at reducing the contribution of tailpipe emissions, they have led to an overall increase in the fractional contributions of non-tailpipe emissions to total OC in CELA (about 14%, 28%, and 28% in 2005, 2010 and 2015, respectively) and Riverside (22%, 27% and 26% in 2005, 2010 and 2015), underscoring the necessity to develop equally effective mitigation policies targeting non-tailpipe PM emissions.

Keywords: PM₂.₅, organic carbon, Los Angeles megacity, PMF, source apportionment, non-tailpipe emissions

Procedia PDF Downloads 187
4311 Utilization of Silk Waste as Fishmeal Replacement: Growth Performance of Cyprinus carpio Juveniles Fed with Bombyx mori Pupae

Authors: Goksen Capar, Levent Dogankaya

Abstract:

According to the circular economy model, resource productivity should be maximized and wastes should be reduced. Since earth’s natural resources are continuously depleted, resource recovery has gained great interest in recent years. As part of our research study on the recovery and reuse of silk wastes, this paper focuses on the utilization of silkworm pupae as fishmeal replacement, which would replace the original fishmeal raw material, namely the fish itself. This, in turn, would contribute to sustainable management of wild fish resources. Silk fibre is secreted by the silkworm Bombyx mori in order to construct a 'room' for itself during its transformation process from pupae to an adult moth. When the cocoons are boiled in hot water, silk fibre becomes loose and the silk yarn is produced by combining thin silk fibres. The remaining wastes are 1) sericin protein, which is dissolved in water, 2) remaining part of cocoon, including the dead body of B. mori pupae. In this study, an eight weeks trial was carried out to determine the growth performance of common carp juveniles fed with waste silkworm pupae meal (SWPM) as a replacement for fishmeal (FM). Four isonitrogenous diets (40% CP) were prepared replacing 0%, 33%, 50%, and 100% of the dietary FM with non-defatted silkworm pupae meal as a dietary protein source for experiments in C. carpio. Triplicate groups comprising of 20 fish (0.92±0.29 g) were fed twice/day with one of the four diets. Over a period of 8 weeks, results showed that the diet containing 50% of its protein from SWPM had significantly higher (p ≤ 0.05) growth rates in all groups. The increasing levels of SWPM were resulted in a decrease in growth performance and significantly lower growth (p ≤ 0.05) was observed with diets having 100% SWPM. The study demonstrates that it is practical to replace 50% of the FM protein with SWPM with a significantly better utilization of the diet but higher SWPM levels are not recommended for juvenile carp. Further experiments are under study to have more detailed results on the possible effects of this alternative diet on the growth performance of juvenile carp.

Keywords: Bombyx mori, Cyprinus carpio, fish meal, silk, waste pupae

Procedia PDF Downloads 137
4310 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 488
4309 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 211
4308 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 136
4307 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: photopolymerization, dimethacrylamide, the degree of conversion, compressive strength

Procedia PDF Downloads 138
4306 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 95
4305 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 188
4304 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS

Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh

Abstract:

A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.

Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials

Procedia PDF Downloads 252
4303 Examining Postcolonial Corporate Power Structures through the Lens of Development Induced Projects in Africa

Authors: Omogboyega Abe

Abstract:

This paper examines the relationships between socio-economic inequalities of power, race, wealth engendered by corporate structure, and domination in postcolonial Africa. The paper further considers how land as an epitome of property and power for the locals paved the way for capitalist accumulation and control in the hands of transnational corporations. European colonization of Africa was contingent on settler colonialism, where properties, including land, were re-modified as extractive resources for primitive accumulation. In developing Africa's extractive resources, transnational corporations (TNCs) usurped states' structures and domination over native land. The usurpation/corporate capture that exists to date has led to remonstrations and arguably a counter-productive approach to development projects. In some communities, the mention of extractive companies triggers resentment. The paradigm of state capture and state autonomy is simply inadequate to either describe or resolve the play of forces or actors responsible for severe corporate-induced human rights violations in emerging markets. Moreover, even if the deadly working conditions are conceived as some regulatory failure, it is tough to tell whose failure. The analysis in this paper is that the complexity and ambiguity evidenced by the multiple regimes and political and economic forces shaping production, consumption, and distribution of socio-economic variables are not exceptional in emerging markets. Instead, the varied experience in developing countries provides a window for seeing what we face in understanding and theorizing the structure and operation of the global economic and regulatory order in general.

Keywords: colonial, emerging markets, business, human rights, corporation

Procedia PDF Downloads 54
4302 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 311
4301 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks

Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge

Abstract:

Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.

Keywords: heavy metal contamination, locally manufactured, quality, soft drinks

Procedia PDF Downloads 130
4300 Integrated Design of Froth Flotation Process in Sludge Oil Recovery Using Cavitation Nanobubbles for Increase the Efficiency and High Viscose Compatibility

Authors: Yolla Miranda, Marini Altyra, Karina Kalmapuspita Imas

Abstract:

Oily sludge wastes always fill in upstream and downstream petroleum industry process. Sludge still contains oil that can use for energy storage. Recycling sludge is a method to handling it for reduce the toxicity and very probable to get the remaining oil around 20% from its volume. Froth flotation, a common method based on chemical unit for separate fine solid particles from an aqueous suspension. The basic composition of froth flotation is the capture of oil droplets or small solids by air bubbles in an aqueous slurry, followed by their levitation and collection in a froth layer. This method has been known as no intensive energy requirement and easy to apply. But the low efficiency and unable treat the high viscosity become the biggest problem in froth flotation unit. This study give the design to manage the high viscosity of sludge first and then entering the froth flotation including cavitation tube on it to change the bubbles into nano particles. The recovery in flotation starts with the collision and adhesion of hydrophobic particles to the air bubbles followed by transportation of the hydrophobic particle-bubble aggregate from the collection zone to the froth zone, drainage and enrichment of the froth, and finally by its overflow removal from the cell top. The effective particle separation by froth flotation relies on the efficient capture of hydrophobic particles by air bubbles in three steps. The important step is collision. Decreasing the bubble particles will increasing the collision effect. It cause the process more efficient. The pre-treatment, froth flotation, and cavitation tube integrated each other. The design shows the integrated unit and its process.

Keywords: sludge oil recovery, froth flotation, cavitation tube, nanobubbles, high viscosity

Procedia PDF Downloads 353
4299 Cas9-Assisted Direct Cloning and Refactoring of a Silent Biosynthetic Gene Cluster

Authors: Peng Hou

Abstract:

Natural products produced from marine bacteria serve as an immense reservoir for anti-infective drugs and therapeutic agents. Nowadays, heterologous expression of gene clusters of interests has been widely adopted as an effective strategy for natural product discovery. Briefly, the heterologous expression flowchart would be: biosynthetic gene cluster identification, pathway construction and expression, and product detection. However, gene cluster capture using traditional Transformation-associated recombination (TAR) protocol is low-efficient (0.5% positive colony rate). To make things worse, most of these putative new natural products are only predicted by bioinformatics analysis such as antiSMASH, and their corresponding natural products biosynthetic pathways are either not expressed or expressed at very low levels under laboratory conditions. Those setbacks have inspired us to focus on seeking new technologies to efficiently edit and refractor of biosynthetic gene clusters. Recently, two cutting-edge techniques have attracted our attention - the CRISPR-Cas9 and Gibson Assembly. By now, we have tried to pretreat Brevibacillus laterosporus strain genomic DNA with CRISPR-Cas9 nucleases that specifically generated breaks near the gene cluster of interest. This trial resulted in an increase in the efficiency of gene cluster capture (9%). Moreover, using Gibson Assembly by adding/deleting certain operon and tailoring enzymes regardless of end compatibility, the silent construct (~80kb) has been successfully refactored into an active one, yielded a series of analogs expected. With the appearances of the novel molecular tools, we are confident to believe that development of a high throughput mature pipeline for DNA assembly, transformation, product isolation and identification would no longer be a daydream for marine natural product discovery.

Keywords: biosynthesis, CRISPR-Cas9, DNA assembly, refactor, TAR cloning

Procedia PDF Downloads 261