Search results for: product service systems
1272 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels
Authors: Virginia Martin Torrejon, Binjie Wu
Abstract:
Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels
Procedia PDF Downloads 1021271 Evaluating the Process of Biofuel Generation from Grass
Authors: Karan Bhandari
Abstract:
Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket
Procedia PDF Downloads 2461270 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 721269 Different Approaches to Teaching a Database Course to Undergraduate and Graduate Students
Authors: Samah Senbel
Abstract:
Database Design is a fundamental part of the Computer Science and Information technology curricula in any school, as well as in the study of management, business administration, and data analytics. In this study, we compare the performance of two groups of students studying the same database design and implementation course at Sacred Heart University in the fall of 2018. Both courses used the same textbook and were taught by the same professor, one for seven graduate students and one for 26 undergraduate students (juniors). The undergraduate students were aged around 20 years old with little work experience, while the graduate students averaged 35 years old and all were employed in computer-related or management-related jobs. The textbook used was 'Database Systems, Design, Implementation, and Management' by Coronel and Morris, and the course was designed to follow the textbook roughly a chapter per week. The first 6 weeks covered the design aspect of a database, followed by a paper exam. The next 6 weeks covered the implementation aspect of the database using SQL followed by a lab exam. Since the undergraduate students are on a 16 week semester, we spend the last three weeks of the course covering NoSQL. This part of the course was not included in this study. After the course was over, we analyze the results of the two groups of students. An interesting discrepancy was observed: In the database design part of the course, the average grade of the graduate students was 92%, while that of the undergraduate students was 77% for the same exam. In the implementation part of the course, we observe the opposite: the average grade of the graduate students was 65% while that of the undergraduate students was 73%. The overall grades were quite similar: the graduate average was 78% and that of the undergraduates was 75%. Based on these results, we concluded that having both classes follow the same time schedule was not beneficial, and an adjustment is needed. The graduates could spend less time on design and the undergraduates would benefit from more design time. In the fall of 2019, 30 students registered for the undergraduate course and 15 students registered for the graduate course. To test our conclusion, the undergraduates spend about 67% of time (eight classes) on the design part of the course and 33% (four classes) on the implementation part, using the exact exams as the previous year. This resulted in an improvement in their average grades on the design part from 77% to 83% and also their implementation average grade from 73% to 79%. In conclusion, we recommend using two separate schedules for teaching the database design course. For undergraduate students, it is important to spend more time on the design part rather than the implementation part of the course. While for the older graduate students, we recommend spending more time on the implementation part, as it seems that is the part they struggle with, even though they have a higher understanding of the design component of databases.Keywords: computer science education, database design, graduate and undergraduate students, pedagogy
Procedia PDF Downloads 1231268 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience
Procedia PDF Downloads 781267 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives
Authors: Archana Gupta, Rajesh Kumar
Abstract:
The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations
Procedia PDF Downloads 2351266 Evaluation of Different Food Baits by Using Kill Traps for the Control of Lesser Bandicoot Rat (Bandicota bengalensis) in Field Crops of Pothwar Plateau, Pakistan
Authors: Nadeem Munawar, Iftikhar Hussain, Tariq Mahmood
Abstract:
The lesser bandicoot rat (Bandicota bengalensis) is widely distributed and a serious agricultural pest in Pakistan. It has wide adaptation with rice-wheat-sugarcane cropping systems of Punjab, Sindh and Khyber Pakhtunkhwa and wheat-groundnut cropping system of Pothwar area, thus inflicting heavy losses to these crops. Comparative efficacies of four food baits (onion, guava, potato and peanut butter smeared bread/Chapatti) were tested in multiple feeding tests for kill trapping of this rat species in the Pothwar Plateau between October 2013 to July 2014 at the sowing, tilling, flowering and maturity stages of wheat, groundnut and millet crops. The results revealed that guava was the most preferred bait as compared to the rest of three, presumably due to particular taste and smell of the guava. The relative efficacies of all four tested baits guava also scoring the highest trapping success of 16.94 ± 1.42 percent, followed by peanut butter, potato, and onion with trapping successes of 10.52 ± 1.30, 7.82 ± 1.21 and 4.5 ± 1.10 percent, respectively. In various crop stages and season-wise the highest trapping success was achieved at maturity stages of the crops, presumably due to higher surface activity of the rat because of favorable climatic conditions, good shelter, and food abundance. Moreover, the maturity stage of wheat crop coincided with spring breeding season and maturity stages of millet and groundnut match with monsoon/autumn breeding peak of the lesser bandicoot rat in Pothwar area. The preferred order among four baits tested was guava > peanut butter > potato > onion. The study recommends that the farmers should periodically carry out rodent trapping at the beginning of each crop season and during non-breeding seasons of this rodent pest when the populations are low in numbers and restricted under crop boundary vegetation, particularly during very hot and cold months.Keywords: Bandicota bengalensis, efficacy, food baits, Pothwar
Procedia PDF Downloads 2691265 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing
Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren
Abstract:
Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 2551264 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 751263 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays
Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold
Abstract:
We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics
Procedia PDF Downloads 1011262 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents
Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino
Abstract:
Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.Keywords: biopolymers, MRI, nanoparticles, contrast agent
Procedia PDF Downloads 1501261 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach
Authors: Bernard Kumi-Boateng, Issaka Yakubu
Abstract:
Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.Keywords: forest, GIS, remote sensing, Goaso
Procedia PDF Downloads 4581260 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches
Authors: S. Sandri, G. M. Contessa, C. Poggi
Abstract:
An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection
Procedia PDF Downloads 3531259 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field
Authors: Lina Ismail Jassim, Robiah Yunus
Abstract:
To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley
Procedia PDF Downloads 3101258 Beneficial Effect of Micropropagation Coupled with Mycorrhization on Enhancement of Growth Performance of Medicinal Plants
Authors: D. H. Tejavathi
Abstract:
Medicinal plants are globally valuable sources of herbal products. Wild populations of many medicinal plants are facing threat of extinction because of their narrow distribution, endemicity, and degradation of specific habitats. Micropropagation is an established in vitro technique by which large number of clones can be obtained from a small bit of explants in a short span of time within a limited space. Mycorrhization can minimize the transient transplantation shock, experienced by the micropropagated plants when they are transferred from lab to land. AM fungal association improves the physiological status of the host plants through better uptake of water and nutrients, particularly phosphorus. Consequently, the growth performance and biosynthesis of active principles are significantly enhanced in AM fungal treated plants. Bacopa monnieri, Andrographis paniculata, Agave vera-curz, Drymaria cordata and Majorana hortensis, important medicinal plants used in various indigenous systems of medicines, are selected for the present study. They form the main constituents of many herbal formulations. Standard in vitro techniques were followed to obtain the micropropagated plants. Shoot tips and nodal segments were used as explants. Explants were cultured on Murashige and Skoog, and Phillips and Collins media supplemented with various combinations of growth regulators. Multiple shoots were obtained on a media containing both auxins and cytokinins at various concentrations and combinations. Multiple shoots were then transferred to rooting media containing auxins for root induction. Thus, obtained in vitro regenerated plants were subjected to brief acclimatization before transferring them to land. One-month-old in vitro plants were treated with AM fungi, and the symbiotic effect on the overall growth parameters was analyzed. It was found that micropropagation coupled with mycorrhization has significant effect on the enhancement of biomass and biosynthesis of active principles in these selected medicinal plants. In vitro techniques coupled with mycorrhization have opened a possibility of obtaining better clones in respect of enhancement of biomass and biosynthesis of active principles. Beneficial effects of AM fungal association with medicinal plants are discussed.Keywords: cultivation, medicinal plants, micropropagation, mycorrhization
Procedia PDF Downloads 1721257 Small and Medium Sized Ports between Specialisation and Diversification: A Framework Tool for Sustainable Development
Authors: Christopher Meyer, Laima Gerlitz
Abstract:
European ports are facing high political pressure through the implementation of initiatives such as the European Green Deal or IMO's 2030 targets (Fit for 55). However, small and medium-sized ports face even higher challenges compared to bigger ones due to lower capacities in various fields such as investments, infra-structure, Human Resources, and funding opportunities. Small and Medium-Sized Ports (SMPs) roles in economic systems are various depending on their specific functionality in maritime ecosystems. Depending on their different situations, being an actor in multiport gateways, aligned to core ports, regional nodes in peripheries for the hinterland, specialized cluster members, or logistical nodes, different strategic business models may be applied to increase SMPs' competitiveness among other bigger ports. Additionally, SMPs are facing more challenges for future development in terms of digital and green transition of their operations. Thus, it is necessary to evaluate the own strategical position and apply management strategies alongside the regional growth and innovation strategies for diversification or specialisation of own port businesses. The research uses inductive perspectives to set up a transferable framework based on case studies to be analysed. In line with particular research and document analysis, qualitative approaches were considered. The research is based on a deep literature review on SMPs as well as theories on diversification and specialisation. Existing theories from different fields are evaluated on their application for the port sector and these specific maritime actors, paying respect to enabling innovation incorporation to enhance digital and environmental transition with fu-ture perspectives for SMPs. The paper aims to provide a decision-making matrix for the strategic positioning of SMPs in Europe, including opportunities to get access to particular EU funds for future development alongside the Regional In-novation Strategies on Smart Specialisation.Keywords: strategic planning, sustainability transition, competitiveness portfolio, EU green deal
Procedia PDF Downloads 811256 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations
Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau
Abstract:
The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device
Procedia PDF Downloads 3481255 Concentration Conditions of Industrially Valuable Accumulations of Gold Ore Mineralization of the Tulallar Ore-Bearing Structure
Authors: Narmina Ismayilova, Shamil Zabitov, Fuad Askerzadeh, Raqif Seyfullayev
Abstract:
Tulallar volcano-tectonic structure is located in the conjugation zone of the Gekgel horst-uplift, Dashkesan, and Agzhakend synclinorium. Regionally, these geological structures are an integral part of the Lok-Karabakh island arc system. Tulallar field is represented by three areas (Central, East, West). The area of the ore field is located within a partially eroded oblong volcano-tectonic depression. In the central part, the core is divided by the deep Tulallar-Chiragdara-Toganalinsky fault with arcuate fragments of the ring structure into three blocks -East, Central, and West, within which the same areas of the Tulallar field are located. In general, for the deposit, the position of both ore-bearing vein zones and ore-bearing blocks is controlled by fractures of two systems - sub-latitudinal and near-meridional orientations. Mineralization of gold-sulfide ores is confined to these zones of disturbances. The zones have a northwestern and northeastern (near-meridian) strike with a steep dip (70-85◦) to the southwest and southeast. The average thickness of the zones is 35 m; they are traced for 2.5 km along the strike and 500 m along with the dip. In general, for the indicated thickness, the zones contain an average of 1.56 ppm Au; however, areas enriched in noble metal are distinguished within them. The zones are complicated by postore fault tectonics. Gold mineralization is localized in the Kimmeridgian volcanics of andesi-basalt-porphyritic composition and their vitrolithoclastic, agglomerate tuffs, and tuff breccias. For the central part of the Tulallar ore field, a map of geochemical anomalies was built on the basis of analysis data carried out in an international laboratory. The total gold content ranges from 0.1-5 g/t, and in some places, even more than 5 g/t. The highest gold content is observed in the monoquartz facies among the secondary quartzites with quartz veins. The smallest amount of gold content appeared in the quartz-kaolin facies. And also, anomalous values of gold content are located in the upper part of the quartz vein. As a result, an en-echelon arrangement of anomalous values of gold along the strike and dip was revealed.Keywords: geochemical anomaly, gold deposit, mineralization, Tulallar
Procedia PDF Downloads 1931254 The Sapir-Whorf Hypothesis and Multicultural Effects on Translators: A Case Study from Chinese Ethnic Minority Literature
Authors: Yuqiao Zhou
Abstract:
The Sapir-Whorf hypothesis (SWH) emphasizes the effect produced by language on people’s minds. According to linguistic relativity, language has evolved over the course of human life on earth, and, in turn, the acquisition of language shapes learners’ thoughts. Despite much attention drawn by SWH, few scholars have attempted to analyse people’s thoughts via their literary works. And yet, the linguistic choices that create a narrative can enable us to examine its writer’s thoughts. Still, less work has been done on the impact of language on the minds of bilingual people. Internationalization has resulted in an increasing number of bilingual and multilingual individuals. In China, where more than one hundred languages are used for communication, most people are bilingual in Mandarin Chinese (the official language of China) and their own dialect. Taking as its corpus the ethnic minority myth of Ge Sa-er Wang by Alai and its English translation by Goldblatt and Lin, this paper aims to analyse the effects of culture on bilingual people’s minds. It will first analyse Alai’s thoughts on using the original version of Ge Sa-er Wang; next, it will examine the thoughts of the two translators by looking at translation choices made in the English version; finally, it will compare the cultural influences evident in the thoughts of Alai, and Goldblatt and Lin. Whereas Alai can speak two Sino-Tibetan languages – Mandarin Chinese and Tibetan – Goldblatt and Lin can speak two languages from different families – Mandarin Chinese (a Sino-Tibetan language) and English (an Indo-European language). The results reveal two systems of thought existing in the translators’ minds; Alai’s text, on the other hand, does not reveal a significant influence from North China, where Mandarin Chinese originated. The findings reveal the inconsistency of a second language’s influence on people’s minds. Notably, they suggest that the more different the two languages are, the greater the influence produced by the second language culture on people’s thoughts. It is hoped that this research will expand the scope of SWH as well as shed light on future translation studies on ethnic minority literature.Keywords: Sapir-Whorf hypothesis, cultural translation, cultural-specific items, Ge Sa-er Wang, ethnic minority literature, Tibet
Procedia PDF Downloads 1211253 A Critical Analysis on Traditional Bases of Indian Society
Authors: Sujit Kumar, Anita Surroch
Abstract:
Indian culture, religions, literature and philosophy has attracted attention of the scholars across the globe since time immemorial. They endeavoured to interpret these dimensions as per their comprehension of Indian Society. The present paper is an attempt to portray a critical analysis of traditional bases of Indian Society as articulated by the great Indians who immensely contributed by shaping, practicing and passing these sub-systems on to the successive generations. India was endowed with a class of intellectuals par excellence during ancient times that traversed lengths and breaths of the country, interacted with the people, understood their capabilities & limitations and needs and churned such knowledge with their fellow beings. It witnessed an era of emergence of Varnashrama, Purushartha, Dharma and Sanskara system. Mention of Varna system in the Purush hymn of Rigveda, Vrihadyaranyak Upnishda. Shantiparva of Mahabharata, the Gita and the interpretations offered by Lord Krishna, Bhrigua Rishi, Yudhishtra and philosophers of modern times give a glimpse of macro level division of labour in ancient Indian Society. The Ashrama system, the four stages of life as referred to in Upnishdas (Chandogaya, Jawali) Sutras (Vashisht Dharma Sutra, Gautma Dharma Sutra), Smritis (Manusmiriti) and four step ladder described by Ved Vyasa is a comprehensive scheme of harmonious development of physical, mental and spiritual capabilities of human beings during different stages of life. The Purushartha, the four broad duties (Dharama, Artha, Kama & Moksha) of human being, lays emphasis on discharging duties as per ones Varna, Ashrama and also keeping in view the time, space and circumstances. Sanskaras are methods and a process to purify mind, body and soul. Today, one gets refraction (not reflection as shades of beliefs, customs practices and interpretations of Varnashrama, Purushartha, Dharma and Sanskara in letter and spirit has undergone changes) of such traditional bases from the writings of Indologists and other scholars.Keywords: intellectuals, Rigveda, Sanskaras, traditional
Procedia PDF Downloads 1591252 Sustainable Integrated Waste Management System
Authors: Lidia Lombardi
Abstract:
Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste
Procedia PDF Downloads 611251 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 321250 Outwrestling Cataclysmic Tsunamis at Hilo, Hawaii: Using Technical Developments of the past 50 Years to Improve Performance
Authors: Mark White
Abstract:
The best practices for owners and urban planners to manage tsunami risk have evolved during the last fifty years, and related technical advances have created opportunities for them to obtain better performance than in earlier cataclysmic tsunami inundations. This basic pattern is illustrated at Hilo Bay, the waterfront area of Hilo, Hawaii, an urban seaport which faces the most severe tsunami hazard of the Hawaiian archipelago. Since April 1, 1946, Hilo Bay has endured tsunami waves with a maximum water height exceeding 2.5 meters following four severe earthquakes: Unimak Island (Mw 8.6, 6.1 m) in 1946; Valdiva (Mw 9.5, the largest earthquake of the 20th century, 10.6 m) in 1960; William Prince Sound (Mw 9.2, 3.8 m) in 1964; and Kalapana (Mw 7.7, the largest earthquake in Hawaii since 1868, 2.6 m) in 1975. Ignoring numerous smaller tsunamis during the same time frame, these four cataclysmic tsunamis have caused property losses in Hilo to exceed $1.25 billion and more than 150 deaths. It is reasonable to foresee another cataclysmic tsunami inundating the urban core of Hilo in the next 50 years, which, if unchecked, could cause additional deaths and losses in the hundreds of millions of dollars. Urban planners and individual owners are now in a position to reduce these losses in the next foreseeable tsunami that generates maximum water heights between 2.5 and 10 meters in Hilo Bay. Since 1946, Hilo planners and individual owners have already created buffer zones between the shoreline and its historic downtown area. As these stakeholders make inevitable improvements to the built environment along and adjacent to the shoreline, they should incorporate new methods for better managing the obvious tsunami risk at Hilo. At the planning level, new manmade land forms, such as tsunami parks and inundation reservoirs, should be developed. Individual owners should require their design professionals to include sacrificial seismic and tsunami fuses that will perform well in foreseeable severe events and that can be easily repaired in the immediate aftermath. These investments before the next cataclysmic tsunami at Hilo will yield substantial reductions in property losses and fatalities.Keywords: hilo, tsunami parks, reservoirs, fuse systems, risk managment
Procedia PDF Downloads 1651249 Modulating Vortex Dynamics Around Circular Cylinder Via Asymmetric Cross-Sectional Profile Morphing: A Comparative Study of Cylindrical and Elliptical Configurations
Authors: Kamila Fethallah, Mahmoud Mekadem, Hamid Ouali
Abstract:
Active flow control around a cylinder is an extensively studied subject in aerodynamics. Researchers apply a range of techniques to alter the fluid flow surrounding a cylindrical body, with the intent of reducing drag, enhancing lift, and optimizing overall aerodynamic performance. This study investigates the manipulation of flow dynamics around a circular cylinder by introducing an original elliptical cylindrical deformation to the traditionally straight section. Through the use of a crank mechanism, precise control of the deformation is achieved, allowing a comprehensive examination of its effects on fluid flow patterns. The main objective of this research is to evaluate the effectiveness of this advanced approach in reducing the drag coefficient and modifying the wake pattern, providing valuable information on flow control and optimization. Experimental results show that varying deformation amplitudes (10%, 15% and 20%) and control frequencies strongly influence drag and flow structure, the maximum reduction in drag coefficient (approximately 44%) observed at 15% amplitude and optimum frequency. The flow structure is strongly influenced by the deformation amplitude and frequency, particularly in the frequency range close to that of the natural shedding. These results suggest that the deformation frequency and amplitude play a crucial role in modifying the flow structure and reducing the drag coefficient. Numerical simulations further support the efficiency of the active flow control technique using cylindrical-elliptical deformation, underlining a consistent drag reduction of up to 42% at extreme deformation conditions (100%). The present study aims at highlighting the potential of this original approach in the enhancement of efficiency and performance of systems involved in energy exchange with fluids. Concluding this, the current study offers fresh routes toward the development of flow control and optimization strategies in a wide range of engineering applications.Keywords: control frequencies, deformation amplitudes, drag coefficient, elliptical cylindrical deformation, flow dynamics, wake pattern
Procedia PDF Downloads 41248 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 2691247 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes
Authors: Sima Aznavi, Poria Fajri, Hanif Livani
Abstract:
Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.Keywords: energy management, renewable energy sources, smart grid, smart home
Procedia PDF Downloads 2481246 Institutional Quality and Tax Compliance: A Cross-Country Regression Evidence
Authors: Debi Konukcu Onal, Tarkan Cavusoglu
Abstract:
In modern societies, the costs of public goods and services are shared through taxes paid by citizens. However, taxation has always been a frictional issue, as tax obligations are perceived to be a financial burden for taxpayers rather than being merit that fulfills the redistribution, regulation and stabilization functions of the welfare state. The tax compliance literature evolves into discussing why people still pay taxes in systems with low costs of legal enforcement. Related empirical and theoretical works show that a wide range of socially oriented behavioral factors can stimulate voluntary compliance and subversive effects as well. These behavioral motivations are argued to be driven by self-enforcing rules of informal institutions, either independently or through interactions with legal orders set by formal institutions. The main focus of this study is to investigate empirically whether institutional particularities have a significant role in explaining the cross-country differences in the tax noncompliance levels. A part of the controversy about the driving forces behind tax noncompliance may be attributed to the lack of empirical evidence. Thus, this study aims to fill this gap through regression estimates, which help to trace the link between institutional quality and noncompliance on a cross-country basis. Tax evasion estimates of Buehn and Schneider is used as the proxy measure for the tax noncompliance levels. Institutional quality is quantified by three different indicators (percentile ranks of Worldwide Governance Indicators, ratings of the International Country Risk Guide, and the country ratings of the Freedom in the World). Robust Least Squares and Threshold Regression estimates based on the sample of the Organization for Economic Co-operation and Development (OECD) countries imply that tax compliance increases with institutional quality. Moreover, a threshold-based asymmetry is detected in the effect of institutional quality on tax noncompliance. That is, the negative effects of tax burdens on compliance are found to be more pronounced in countries with institutional quality below a certain threshold. These findings are robust to all alternative indicators of institutional quality, supporting the significant interaction of societal values with the individual taxpayer decisions.Keywords: institutional quality, OECD economies, tax compliance, tax evasion
Procedia PDF Downloads 1351245 The Contact between a Rigid Substrate and a Thick Elastic Layer
Authors: Nicola Menga, Giuseppe Carbone
Abstract:
Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.Keywords: contact mechanics, adhesion, friction, thick layer
Procedia PDF Downloads 5131244 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury
Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert
Abstract:
Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention
Procedia PDF Downloads 3571243 Is Sodium Channel Nav1.7 an Ideal Therapeutically Analgesic Target? A Systematic Review
Authors: Yutong Wan, John N. Wood
Abstract:
Introduction: SCN9A encoded Nav1.7 is an ideal therapeutic target with minimal side effects for the pharmaceutical industry because SCN9A variants can cause both human gains of function pain-related mutations and loss of function pain-free mutations. This study reviews the clinical effectiveness of existing Nav1.7 inhibitors, which theoretically should be powerful analgesics. Methods: A systematic review is conducted on the effectiveness of current Nav1.7 blockers undergoing clinical trials. Studies were mainly extracted from PubMed, U.S. National Library of Medicine Clinical Trials, World Health Organization International Clinical Trials Registry, ISRCTN registry platform, and Integrated Research Approval System by NHS. Only studies with full text available and those conducted using double-blinded, placebo controlled, and randomised designs and reporting at least one analgesic measurement were included. Results: Overall, 61 trials were screened, and eight studies covering PF 05089771 (Pfizer), TV 45070 (Teva & Xenon), and BIIB074 (Biogen) met the inclusion criteria. Most studies were excluded because results were not published. All three compounds demonstrated insignificant analgesic effects, and the comparison between PF 05089771 and pregabalin/ibuprofen showed that PF 05089771 was a much weaker analgesic. All three drug candidates only have mild side effects, indicating the potentials for further investigation of Nav1.7 antagonists. Discussion: The failure of current Nav1.7 small molecule inhibitors might attribute to ignorance of the key role of endogenous systems in Nav1.7 null mutants, the lack of selectivity and blocking potency, and central impermeability. The synergistic combination of analgesic drugs, a recent UCL patent, combining a small dose of Nav1.7 blockers and opioids or enkephalinase inhibitors dramatically enhanced the analgesic effects. Conclusion: The current clinical testing Nav1.7 blockers are generally disappointing. However, the newer generation of Nav1.7 targeting analgesics has overcome the major constraints of its predecessors.Keywords: chronic pain, Nav1.7 blockers, SCN9A, systematic review
Procedia PDF Downloads 131