Search results for: robust penalized regression
3233 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa
Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce
Abstract:
In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security
Procedia PDF Downloads 4253232 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: hardness, RSM, sputtering, TiN XRD
Procedia PDF Downloads 3213231 Factors Affecting Cesarean Section among Women in Qatar Using Multiple Indicator Cluster Survey Database
Authors: Sahar Elsaleh, Ghada Farhat, Shaikha Al-Derham, Fasih Alam
Abstract:
Background: Cesarean section (CS) delivery is one of the major concerns both in developing and developed countries. The rate of CS deliveries are on the rise globally, and especially in Qatar. Many socio-economic, demographic, clinical and institutional factors play an important role for cesarean sections. This study aims to investigate factors affecting the prevalence of CS among women in Qatar using the UNICEF’s Multiple Indicator Cluster Survey (MICS) 2012 database. Methods: The study has focused on the women’s questionnaire of the MICS, which was successfully distributed to 5699 participants. Following study inclusion and exclusion criteria, a final sample of 761 women aged 19- 49 years who had at least one delivery of giving birth in their lifetime before the survey were included. A number of socio-economic, demographic, clinical and institutional factors, identified through literature review and available in the data, were considered for the analyses. Bivariate and multivariate logistic regression models, along with a multi-level modeling to investigate clustering effect, were undertaken to identify the factors that affect CS prevalence in Qatar. Results: From the bivariate analyses the study has shown that, a number of categorical factors are statistically significantly associated with the dependent variable (CS). When identifying the factors from a multivariate logistic regression, the study found that only three categorical factors -‘age of women’, ‘place at delivery’ and ‘baby weight’ appeared to be significantly affecting the CS among women in Qatar. Although the MICS dataset is based on a cluster survey, an exploratory multi-level analysis did not show any clustering effect, i.e. no significant variation in results at higher level (households), suggesting that all analyses at lower level (individual respondent) are valid without any significant bias in results. Conclusion: The study found a statistically significant association between the dependent variable (CS delivery) and age of women, frequency of TV watching, assistance at birth and place of birth. These results need to be interpreted cautiously; however, it can be used as evidence-base for further research on cesarean section delivery in Qatar.Keywords: cesarean section, factors, multiple indicator cluster survey, MICS database, Qatar
Procedia PDF Downloads 1163230 Health and Subjective Wellbeing: The Role of Inequalities
Authors: Francesco Colcerasa, Fabio Pisani
Abstract:
We contribute to the subjective well-being literature testing the relationship between life satisfaction and inequality of opportunity in health, measured through the Human Opportunity Index calculated at the national level using individual socio-economic data from the cross-country European Social Survey sample. We compute several indexes of opportunity inequality in health, each obtained according to a different combination of circumstances (gender, immigrant status, parents’ education). We find a robust and significant relationship where life satisfaction is higher in correspondence with low levels of health opportunity inequality. The result is twofold. On the one hand, the importance of the well-being of other types of inequality than income inequality emerges. On the other hand, the socioeconomic roots of inequality in health are investigated, suggesting that circumstances at birth have a role in future well-being. Several rationales for the nexus between life satisfaction and inequality of opportunity in health are possible, which we investigate by splitting the sample. Among others, we find a prominent role of pro-social preferences – formalized as interest towards own offspring (which can be interpreted as intergenerational justice) – as a mediating factor of the relationship.Keywords: Inequality of opportunity, subjective wellbeing, health, health inequality, inequality of opportunity in health
Procedia PDF Downloads 853229 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning
Authors: S. A. N. Danushka, T. A. Weerasinghe
Abstract:
The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model
Procedia PDF Downloads 1973228 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 713227 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 5593226 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing
Authors: McClain Thiel
Abstract:
Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.Keywords: monocular distancing, computer vision, facial analysis, 3D localization
Procedia PDF Downloads 1393225 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation
Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai
Abstract:
Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve
Procedia PDF Downloads 2033224 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density
Authors: Lalit Kumar, Rashid Al Shidi
Abstract:
Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.Keywords: dubas bug, date palm, tree density, infestation levels
Procedia PDF Downloads 1933223 Resilient Strategic Approach Towards Environmental Pollution and Infrastructural Misappropriation in Niger Delta Region: A Bibliometric Analysis
Authors: Anyia Nduka, Aslan Bin Amad Senin
Abstract:
Environmental degradation and infrastructure abuse in the Niger Delta have received increasing attention over the last two decades in several sectors, like strategic management, societal impacts, etc. Resilience strategy in human capital development and technology has inspired the formulation and implementation of strategies, policies, or activities to mitigate risks while taking advantage of opportunities to respond to crisis management. This research hopes to add to the debate on the resilient strategic model in the Niger Delta region, which is plagued with environmental and infrastructure mismanagement. It further proposes a conceptual framework of robust strategy and open technology model on bibliometric analysis. This article is intended to be a starting point for an in-depth discussion of the factors that lead to these mismanagements. Four factors were discovered for a resilient strategy leading to a more efficient and effective management procedure.Keywords: resilience strategy, infrastructural mismanagement, human capital development., strategic management
Procedia PDF Downloads 873222 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 5163221 RBF Modelling and Optimization Control for Semi-Batch Reactors
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors
Procedia PDF Downloads 4683220 Normally Closed Thermoplastic Microfluidic Valves with Microstructured Valve Seats: A Strategy to Avoid Permanently Bonded Valves during Channel Sealing
Authors: Kebin Li, Keith Morton, Matthew Shiu, Karine Turcotte, Luke Lukic, Teodor Veres
Abstract:
We present a normally closed thermoplastic microfluidic valve design that uses microstructured valve seats to locally prevent the membrane from bonding to the valve seat during microfluidic channel sealing. The microstructured valve seat reduces the adhesion force between the contact surfaces of the valve seat and the membrane locally, allowing valve open and close operations while simultaneously providing a permanent and robust bond elsewhere to cover and seal the microfluidic channel network. Dynamic valve operation including opening and closing times can be tuned by changing the valve seat diameter as well as the density of the microstructures on the valve seats. The influence of the microstructured valve seat on the general flow behavior through the microfluidic devices was also studied. A design window for the fabrication of valve structure is identified and discussed to minimize the fabrication complexity.Keywords: hot-embossing, injection molding, microfabrication, microfluidics, microvalves, thermoplastic elastomer
Procedia PDF Downloads 2943219 Implementing Zero-Trust Security with Passwordless Authentication Gateways for Privacy-Oriented Organizations Using Keycloak
Authors: Andrei Bogdan Stanescu, Laura Diaconescu
Abstract:
With the increasing concerns about data breaches and privacy violations, organizations seek robust security measures to protect sensitive information. This research paper highlights the importance of implementing the Zero-Trust Security methodology using Passwordless Authentication Gateways that leverage Keycloak, an open-source Identity and Access Management (IAM) software, as a solution to address the security challenges these organizations face. The paper presents the successful implementation and deployment of such a solution in a mid-size, privacy-oriented organization. The implementation resulted in significant security improvements, reducing the risk of unauthorized access and potential data breaches. Moreover, user feedback indicated enhanced convenience and streamlined authentication experiences. The results of this study bring solid contributions in the field of cybersecurity and provide practical insights for organizations aiming to strengthen their security practices.Keywords: identity and access management, passwordless authentication, privacy, zero-trust security
Procedia PDF Downloads 913218 Pre-Operative Psychological Factors Significantly Add to the Predictability of Chronic Narcotic Use: A Two Year Prospective Study
Authors: Dana El-Mughayyar, Neil Manson, Erin Bigney, Eden Richardson, Dean Tripp, Edward Abraham
Abstract:
Use of narcotics to treat pain has increased over the past two decades and is a contributing factor to the current public health crisis. Understanding the pre-operative risks of chronic narcotic use may be aided through investigation of psychological measures. The objective of the reported study is to determine predictors of narcotic use two years post-surgery in a thoracolumbar spine surgery population, including an array of psychological factors. A prospective observational study of 191 consecutively enrolled adult patients having undergone thoracolumbar spine surgery is presented. Baseline measures of interest included the Pain Catastrophizing Scale (PCS), Tampa Scale for Kinesiophobia, Multidimensional Scale for Perceived Social Support (MSPSS), Chronic Pain Acceptance Questionnaire (CPAQ-8), Oswestry Disability Index (ODI), Numeric Rating Scales for back and leg pain (NRS-B/L), SF-12’s Mental Component Summary (MCS), narcotic use and demographic variables. The post-operative measure of interest is narcotic use at 2-year follow-up. Narcotic use is collapsed into binary categories of use and no use. Descriptive statistics are run. Chi Square analysis is used for categorical variables and an ANOVA for continuous variables. Significant variables are built into a hierarchical logistic regression to determine predictors of post-operative narcotic use. Significance is set at α < 0.05. Results: A total of 27.23% of the sample were using narcotics two years after surgery. The regression model included ODI, NRS-Leg, time with condition, chief complaint, pre-operative drug use, gender, MCS, PCS subscale helplessness, and CPAQ subscale pain willingness and was significant χ² (13, N=191)= 54.99; p = .000. The model accounted for 39.6% of the variance in narcotic use and correctly predicted in 79.7% of cases. Psychological variables accounted for 9.6% of the variance over and above the other predictors. Conclusions: Managing chronic narcotic usage is central to the patient’s overall health and quality of life. Psychological factors in the preoperative period are significant predictors of narcotic use 2 years post-operatively. The psychological variables are malleable, potentially allowing surgeons to direct their patients to preventative resources prior to surgery.Keywords: narcotics, psychological factors, quality of life, spine surgery
Procedia PDF Downloads 1443217 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island
Procedia PDF Downloads 2723216 Association between Cholesterol Levels and Atopy among Adolescents with and without Sufficient Amount of Physical Activity
Authors: Keith T. S. Tung, H. W. Tsang, Rosa S. Wong, Frederick K. Ho, Patrick Ip
Abstract:
Objectives: Atopic diseases are increasingly prevalent among children and adolescents, both locally and internationally. One of the possible contributing factors could be the hypercholesterolemia which leads to cholesterol accumulation in macrophages and other immune cells that would eventually promote inflammatory responses, including augmentation of toll-like receptor (TLR). Meanwhile, physical activity is well known for its beneficial effects against the condition of hypercholesterolemia and incidence of atopic diseases. This study, therefore, explored whether atopic diseases were associated with increased cholesterol levels and whether physical activity habit influenced this association. Methods: This is a sub-study derived from the longitudinal cohort study which recruited a group of children at five years of age in Kindergarten 3 (K3) to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, adolescents (average age: 13 years old) were asked to report their physical activity habit and history of any atopic diseases. During health assessment, peripheral blood samples were collected from the adolescents to study their lipid profile [total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol]. Regression analyses were performed to test the relationships between variables of interest. Results: Among the 315 adolescents, 99 (31.4%) reported to have allergic rhinitis. There were 45 (14.3%) with eczema, 17 (5.4%) with a food allergy, and 12 (3.8%) with asthma. Regression analyses showed that adolescents with a history of any type of atopic diseases had significantly higher total cholesterol (B=13.3, p < 0.01) and LDL cholesterol (B=7.9, p < 0.05) levels. Further subgroup analyses were conducted to examine the effect of physical activity level on the association between atopic diseases and cholesterol levels. We found stronger associations among those who did not meet the World Health Organization recommendation of at least 60 minutes of moderate-to-vigorous activities each day (total cholesterol: B=15.5, p < 0.01; LDL cholesterol: B=10.4, p < 0.05). For those who met this recommendation, the associations between atopic diseases and cholesterol levels became insignificant. Conclusion: Our study results support the current research evidence on the relationship between an elevated level of cholesterol and atopic diseases. More importantly, our results provide preliminary support for the protective effect of regular exercises against elevated cholesterol level due to atopic diseases. The findings highlight the importance of a healthy lifestyle for keeping cholesterol levels in the normal range, which can bring benefits to both physical and mental health.Keywords: atopic diseases, Chinese adolescents, cholesterol level, physical activity
Procedia PDF Downloads 1203215 Leadership and Corporate Social Responsibility: The Role of Spiritual Intelligence
Authors: Meghan E. Murray, Carri R. Tolmie
Abstract:
This study aims to identify potential factors and widely applicable best practices that can contribute to improving corporate social responsibility (CSR) and corporate performance for firms by exploring the relationship between transformational leadership, spiritual intelligence, and emotional intelligence. Corporate social responsibility is when companies are cognizant of the impact of their actions on the economy, their communities, the environment, and the world as a whole while executing business practices accordingly. The prevalence of CSR has continuously strengthened over the past few years and is now a common practice in the business world, with such efforts coinciding with what stakeholders and the public now expect from corporations. Because of this, it is extremely important to be able to pinpoint factors and best practices that can improve CSR within corporations. One potential factor that may lead to improved CSR is spiritual intelligence (SQ), or the ability to recognize and live with a purpose larger than oneself. Spiritual intelligence is a measurable skill, just like emotional intelligence (EQ), and can be improved through purposeful and targeted coaching. This research project consists of two studies. Study 1 is a case study comparison of a benefit corporation and a non-benefit corporation. This study will examine the role of SQ and EQ as moderators in the relationship between the transformational leadership of employees within each company and the perception of each firm’s CSR and corporate performance. Project methodology includes creating and administering a survey comprised of multiple pre-established scales on transformational leadership, spiritual intelligence, emotional intelligence, CSR, and corporate performance. Multiple regression analysis will be used to extract significant findings from the collected data. Study 2 will dive deeper into spiritual intelligence itself by analyzing pre-existing data and identifying key relationships that may provide value to companies and their stakeholders. This will be done by performing multiple regression analysis on anonymized data provided by Deep Change, a company that has created an advanced, proprietary system to measure spiritual intelligence. Based on the results of both studies, this research aims to uncover best practices, including the unique contribution of spiritual intelligence, that can be utilized by organizations to help enhance their corporate social responsibility. If it is found that high spiritual and emotional intelligence can positively impact CSR effort, then corporations will have a tangible way to enhance their CSR: providing targeted employees with training and coaching to increase their SQ and EQ.Keywords: corporate social responsibility, CSR, corporate performance, emotional intelligence, EQ, spiritual intelligence, SQ, transformational leadership
Procedia PDF Downloads 1273214 Structural Performances of Rubberized Concrete Wall Panel Utilizing Fiber Cement Board as Skin Layer
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Mo Kim Hung, Yip Chun Chieh
Abstract:
This research delves into the structural characteristics of distinct construction material, rubberized lightweight foam concrete (RLFC) wall panels, which have been developed as a sustainable alternative for the construction industry. These panels are engineered with a RLFC core, possessing a density of 1150 kg/m3, which is specifically formulated to bear structural loads. The core is enveloped with high-strength fiber cement boards, selected for their superior load-bearing capabilities, and enhanced flexural strength when compared to conventional concrete. A thin bed adhesive, known as TPS, is employed to create a robust bond between the RLFC core and the fiber cement cladding. This study underscores the potential of RLFC wall panels as a viable and eco-friendly option for modern building construction, offering a combination of structural efficiency and environmental benefits.Keywords: structural performance, rubberized concrete wall panel, fiber cement board, insulation performance
Procedia PDF Downloads 623213 Role of Strategic Human Resource Practices and Knowledge Management Capacity
Authors: Ploychompoo Kittikunchotiwut
Abstract:
This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.Keywords: human resource practices, knowledge management capacity, innovation performance
Procedia PDF Downloads 3043212 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona
Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz
Abstract:
Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.Keywords: census, empirical modeling, heat-related morbidity, spatial analysis
Procedia PDF Downloads 1263211 A Comparative Study of Cognitive Factors Affecting Social Distancing among Vaccinated and Unvaccinated Filipinos
Authors: Emmanuel Carlo Belara, Albert John Dela Merced, Mark Anthony Dominguez, Diomari Erasga, Jerome Ferrer, Bernard Ombrog
Abstract:
Social distancing errors are a common prevalence between vaccinated and unvaccinated in the Filipino community. This study aims to identify and relate the factors on how they affect our daily lives. Observed factors include memory, attention, anxiety, decision-making, and stress. Upon applying the ergonomic tools and statistical treatment such as t-test and multiple linear regression, stress and attention turned out to have the most impact to the errors of social distancing.Keywords: vaccinated, unvaccinated, socoal distancing, filipinos
Procedia PDF Downloads 2013210 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation
Authors: Tomoaki Hashimoto
Abstract:
Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.Keywords: optimal control, stochastic systems, quantum systems, stabilization
Procedia PDF Downloads 4603209 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery
Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian
Abstract:
New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom
Procedia PDF Downloads 3333208 Fiscal Stability Indicators and Public Debt Trajectory in Croatia
Authors: Hrvoje Simovic
Abstract:
Paper analyses the key problems of fiscal sustainability in Croatia. To point out key challenges of fiscal sustainability, the public debt sustainability is analyzed using standard indicators of fiscal stability, accompanied with the identification of regime changes approach in the public debt trajectory using switching regression approach. The analysis is conducted for the period from 2001 to 2016. Results show huge vulnerability in recession period (2009-14), so key challenges in current fiscal policy and public debt management are recognized in maturity prolongation, interest rates trends, and credit rating expectations.Keywords: fiscal sustainability, public debt, Croatia, budget deficit
Procedia PDF Downloads 2603207 Differentials in Reproductive and Child Health Care in India
Authors: Dewaram Abhiman Nagdeve
Abstract:
The present paper examined the urban-rural differentials and the factors influencing net change in reproductive and child health input, its utilization, and its output during the National Family Health Survey conducted during 1992-93 and 2019-21 in India. The analysis of NFHS data has been done and variables have been grouped into health input regarding antenatal care, postnatal care, and child care, utilization regarding reproductive and child health care, and reproductive and child health outcomes. An analysis was done using bivariate analysis and the chi-square test. The study reveals that there was an increase in health input, utilization, and output during the intra-survey period. Urban-rural disparities in Reproductive and Child Health (RCH) indicators persist, highlighting the need for focused intervention by the Indian government. Key steps should include enhancing RCH programs through robust information and education campaigns and deploying dedicated health personnel to remote and inaccessible rural areas. These initiatives are crucial to reducing both maternal and child mortality rates and ensuring equitable healthcare access nationwide.Keywords: urban, rural, differentials, reproductive and child health, India
Procedia PDF Downloads 33206 The Relationship between Emotional Intelligence and Leadership Performance
Authors: Omar Al Ali
Abstract:
The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.Keywords: emotional intelligence, cognitive ability, leadership, performance
Procedia PDF Downloads 4773205 Linear Semi Active Controller of Magneto-Rheological Damper for Seismic Vibration Attenuation
Authors: Zizouni Khaled, Fali Leyla, Sadek Younes, Bousserhane Ismail Khalil
Abstract:
In structural vibration caused principally by an earthquake excitation, the most vibration’s attenuation system used recently is the semi active control with a Magneto Rheological Damper device. This control was a subject of many researches and works in the last years. The big challenges of searchers in this case is to propose an adequate controller with a robust algorithm of current or tension adjustment. In this present paper, a linear controller is proposed to control the MR damper using to reduce a vibrations of three story structure exposed to El Centro’s 1940 and Boumerdès 2003 earthquakes. In this example, the MR damper is installed in the first floor of the structure. The numerical simulations results of the proposed linear control with a feedback law based on clipped optimal algorithm showed the feasibility of the semi active control to protecting civil structures. The comparison of the controlled structure and uncontrolled structures responses illustrate clearly the performance and the effectiveness of the simple proposed approach.Keywords: MR damper, seismic vibration, semi-active control
Procedia PDF Downloads 2843204 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 320