Search results for: motor for washing machine
2529 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 922528 Statistical Quality Control on Assignable Causes of Variation on Cement Production in Ashaka Cement PLC Gombe State
Authors: Hamisu Idi
Abstract:
The present study focuses on studying the impact of influencer recommendation in the quality of cement production. Exploratory research was done on monthly basis, where data were obtained from secondary source i.e. the record kept by an automated recompilation machine. The machine keeps all the records of the mills downtime which the process manager checks for validation and refer the fault (if any) to the department responsible for maintenance or measurement taking so as to prevent future occurrence. The findings indicated that the product of the Ashaka Cement Plc. were considered as qualitative, since all the production processes were found to be in control (preset specifications) with the exception of the natural cause of variation which is normal in the production process as it will not affect the outcome of the product. It is reduced to the bearest minimum since it cannot be totally eliminated. It is also hopeful that the findings of this study would be of great assistance to the management of Ashaka cement factory and the process manager in particular at various levels in the monitoring and implementation of statistical process control. This study is therefore of great contribution to the knowledge in this regard and it is hopeful that it would open more research in that direction.Keywords: cement, quality, variation, assignable cause, common cause
Procedia PDF Downloads 2592527 The Origins of Representations: Cognitive and Brain Development
Authors: Athanasios Raftopoulos
Abstract:
In this paper, an attempt is made to explain the evolution or development of human’s representational arsenal from its humble beginnings to its modern abstract symbols. Representations are physical entities that represent something else. To represent a thing (in a general sense of “thing”) means to use in the mind or in an external medium a sign that stands for it. The sign can be used as a proxy of the represented thing when the thing is absent. Representations come in many varieties, from signs that perceptually resemble their representative to abstract symbols that are related to their representata through conventions. Relying the distinction among indices, icons, and symbols, it is explained how symbolic representations gradually emerged from indices and icons. To understand the development or evolution of our representational arsenal, the development of the cognitive capacities that enabled the gradual emergence of representations of increasing complexity and expressive capability should be examined. The examination of these factors should rely on a careful assessment of the available empirical neuroscientific and paleo-anthropological evidence. These pieces of evidence should be synthesized to produce arguments whose conclusions provide clues concerning the developmental process of our representational capabilities. The analysis of the empirical findings in this paper shows that Homo Erectus was able to use both icons and symbols. Icons were used as external representations, while symbols were used in language. The first step in the emergence of representations is that a sensory-motor purely causal schema involved in indices is decoupled from its normal causal sensory-motor functions and serves as a representation of the object that initially called it into play. Sensory-motor schemes are tied to specific contexts of the organism-environment interactions and are activated only within these contexts. For a representation of an object to be possible, this scheme must be de-contextualized so that the same object can be represented in different contexts; a decoupled schema loses its direct ties to reality and becomes mental content. The analysis suggests that symbols emerged due to selection pressures of the social environment. The need to establish and maintain social relationships in ever-enlarging groups that would benefit the group was a sufficient environmental pressure to lead to the appearance of the symbolic capacity. Symbols could serve this need because they can express abstract relationships, such as marriage or monogamy. Icons, by being firmly attached to what can be observed, could not go beyond surface properties to express abstract relations. The cognitive capacities that are required for having iconic and then symbolic representations were present in Homo Erectus, which had a language that started without syntactic rules but was structured so as to mirror the structure of the world. This language became increasingly complex, and grammatical rules started to appear to allow for the construction of more complex expressions required to keep up with the increasing complexity of social niches. This created evolutionary pressures that eventually led to increasing cranial size and restructuring of the brain that allowed more complex representational systems to emerge.Keywords: mental representations, iconic representations, symbols, human evolution
Procedia PDF Downloads 542526 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 882525 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 1282524 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3892523 Component Based Testing Using Clustering and Support Vector Machine
Authors: Iqbaldeep Kaur, Amarjeet Kaur
Abstract:
Software Reusability is important part of software development. So component based software development in case of software testing has gained a lot of practical importance in the field of software engineering from academic researcher and also from software development industry perspective. Finding test cases for efficient reuse of test cases is one of the important problems aimed by researcher. Clustering reduce the search space, reuse test cases by grouping similar entities according to requirements ensuring reduced time complexity as it reduce the search time for retrieval the test cases. In this research paper we proposed approach for re-usability of test cases by unsupervised approach. In unsupervised learning we proposed k-mean and Support Vector Machine. We have designed the algorithm for requirement and test case document clustering according to its tf-idf vector space and the output is set of highly cohesive pattern groups.Keywords: software testing, reusability, clustering, k-mean, SVM
Procedia PDF Downloads 4302522 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 792521 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.Keywords: classification, CRISP-DM, machine learning, predictive quality, regression
Procedia PDF Downloads 1432520 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2942519 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 3702518 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition
Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva
Abstract:
This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization
Procedia PDF Downloads 1692517 Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain
Authors: Radwa Elshorbagy, Alaa Elden Balbaa, Khaled Ayad, Waleed Reda
Abstract:
Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.Keywords: hip strategy, ankle strategy, postural control, dynamic balance
Procedia PDF Downloads 3372516 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve
Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han
Abstract:
A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve
Procedia PDF Downloads 3012515 Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite
Authors: Lakshminarayanan, Vijayaraghavan, Krishnamurthy
Abstract:
The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results.Keywords: ceramic matrix composite, cold compaction, material characterization, particulate and surface grinding
Procedia PDF Downloads 2412514 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 642513 The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations
Authors: Hassan Mahdi
Abstract:
The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools.Keywords: machine translation, computer-assisted translation, collocations, technology
Procedia PDF Downloads 1912512 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1462511 Dyeability of Silk Fabric with Dactylopius coccus Costa and Quercus infectoria Olivier
Authors: Burcu Yilmaz Şahinbaşkan, Recep Karadağ, Emine Torgan
Abstract:
Nowadays, many natural dyes are used for colouration of textile materials. The natural dyes are friendly to human health and environment. Cochineal (Dactylopius coccus Costa) can be used with other natural dye plants for colouration of silk and wool fabrics. Almost never research works on the dyeing of silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier together. In this study, dyeability of 100 % silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier was studied. Optimum dyeing parameters were determined by using different concentration of Dactylopius coccus Costa (10%), Quercus infectoria Olivier (0,1,5 and 10%) and mordant salt (0 and 3%). The dyed silk fabrics were examined for their colorimetric and fastness properties. The fabrics were dyed succesfully dark colours with 10 % Dactylopius coccus Costa, 10 % Quercus infectoria Olivier and presence of mordanting after dyeing process (3% mordant salt). The washing and light colour fastness of the dyed fabrics were investigated and adequate results were obtained.Keywords: Dactylopius coccus Costa, Quercus infectoria Olivier, natural dye, dyeing, silk fabric
Procedia PDF Downloads 5952510 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1282509 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1472508 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1262507 The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain
Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda
Abstract:
Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.Keywords: ankle sprain, fatigue hip muscles, dynamic balance
Procedia PDF Downloads 2992506 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 662505 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric
Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma
Abstract:
Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.Keywords: Butea monosperma, cotton, mordants, natural dyes
Procedia PDF Downloads 3402504 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.Keywords: Kevlar, needle temperautre, nomex, sewing
Procedia PDF Downloads 5302503 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests
Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade
Abstract:
This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table
Procedia PDF Downloads 1852502 A Study to Connect the Objective Interface Design Characters To Ergonomic Safety
Authors: Gaoguang Yang, Shan Fu
Abstract:
Human-machine interface (HMI) intermediate system information to human operators to facilitate human ability to manage and control the system. Well-designed HMI would enhance human ability. An evaluation must be performed to confirm that the designed HMI would enhance but not degrade human ability. However, the prevalent HMI evaluation techniques have difficulties in more thoroughly and accurately evaluating the suitability and fitness of a given HMI for the wide variety of uncertainty contained in both the existing HMI evaluation techniques and the large number of task scenarios. The first limitation should be attributed to the subjective and qualitative analysis characteristics of these evaluation methods, and the second one should be attributed to the cost balance. This study aims to explore the connection between objective HMI characters and ergonomic safety and step forward toward solving these limitations with objective, characterized HMI parameters. A simulation experiment was performed with the time needed for human operators to recognize the HMI information as characterized HMI parameter, and the result showed a strong correlation between the parameter and ergonomic safety level.Keywords: Human-Machine Interface (HMI), evaluation, objective, characterization, simulation
Procedia PDF Downloads 652501 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity
Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos
Abstract:
Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.Keywords: antarctic, bacteria, biosurfactants, hydrocarbons
Procedia PDF Downloads 2782500 A Study of the Atlantoaxial Fracture or Dislocation in Motorcyclists with Helmet Accidents
Authors: Shao-Huang Wu, Ai-Yun Wu, Meng-Chen Wu, Chun-Liang Wu, Kai-Ping Shaw, Hsiao-Ting Chen
Abstract:
Objective: To analyze the forensic autopsy data of known passengers and compare it with the National database of the autopsy report in 2017, and obtain the special patterned injuries, which can be used as the reference for the reconstruction of hit-and-run motor vehicle accidents. Methods: Analyze the items of the Motor Vehicle Accident Report, including Date of accident, Time occurred, Day, Acc. severity, Acc. Location, Acc. Class, Collision with Vehicle, Motorcyclists Codes, Safety equipment use, etc. Analyzed the items of the Autopsy Report included, including General Description, Clothing and Valuables, External Examination, Head and Neck Trauma, Trunk Trauma, Other Injuries, Internal Examination, Associated Items, Autopsy Determinations, etc. Materials: Case 1. The process of injury formation: the car was chased forward and collided with the scooter. The passenger wearing the helmet fell to the ground. The helmet crashed under the bottom of the sedan, and the bottom of the sedan was raised. Additionally, the sedan was hit on the left by the other sedan behind, resulting in the front sedan turning 180 degrees on the spot. The passenger’s head was rotated, and the cervical spine was fractured. Injuries: 1. Fracture of atlantoaxial joint 2. Fracture of the left clavicle, scapula, and proximal humerus 3. Fracture of the 1-10 left ribs and 2-7 right ribs with lung contusion and hemothorax 4. Fracture of the transverse process of 2-5 lumbar vertebras 5. Comminuted fracture of the right femur 6. Suspected subarachnoid space and subdural hemorrhage 7. Laceration of the spleen. Case 2. The process of injury formation: The motorcyclist wearing the helmet fell to the left by himself, and his chest was crushed by the car going straight. Only his upper body was under the car and the helmet finally fell off. Injuries: 1. Dislocation of atlantoaxial joint 2. Laceration on the left posterior occipital 3. Laceration on the left frontal 4. Laceration on the left side of the chin 5. Strip bruising on the anterior neck 6. Open rib fracture of the right chest wall 7. Comminuted fracture of both 1-12 ribs 8. Fracture of the sternum 9. Rupture of the left lung 10. Rupture of the left and right atria, heart tip and several large vessels 11. The aortic root is nearly transected 12. Severe rupture of the liver. Results: The common features of the two cases were the fracture or dislocation of the atlantoaxial joint and both helmets that were crashed. There were no atlantoaxial fractures or dislocations in 27 pedestrians (without wearing a helmet) versus motor vehicle accidents in 2017 the National database of an autopsy report, but there were two atlantoaxial fracture or dislocation cases in the database, both of which were cases of falling from height. Conclusion: The cervical spine fracture injury of the motorcyclist, who was wearing a helmet, is very likely to be a patterned injury caused by his/her fall and rollover under the sedan. It could provide a reference for forensic peers.Keywords: patterned injuries, atlantoaxial fracture or dislocation, accident reconstruction, motorcycle accident with helmet, forensic autopsy data
Procedia PDF Downloads 91