Search results for: generalized autoregressive score model
17621 The Quality of Multi-Ethnic Preschool Environment and Human Resources: Teachers' Satisfaction on Their Career Development
Authors: Nordin Mamat, Abdul Rahim Razalli, Loy Chee Luen, Abdul Talib Hashim
Abstract:
This study was designed to investigate preschool environment in multi-ethnic preschool in Malaysia. The objectives are to identify the quality of work environment in multi-ethnic preschools; to investigate the practices of teachers’ role and responsibility; and to identify the quality of human resources. The study involved 2004 respondents who are the staff of multi-ethnic preschool from the government agency who provide preschool service. This study was conducted using a mixed method in which questionnaires and interviews were used to obtain data from respondents. The findings were analysed using mean and used Likert scale to determine the three-stage level such as the high, moderate and low. Findings indicated that the work environment at a moderate level, but the facilities provided insufficient to carry out educational activities with children. The result based on ranking of duties and responsibilities of teachers in multi-ethnic preschool shows the teachers practice daily record of children's development is very little, that only 65 persons are recording the child's development. The poor ratio of teachers and child in multi-ethnic preschool is between 25 to 35 children per class which means the children need a lot of attention. Meanwhile, the work environment is moderate with a mean score of 3.65 and overall mean score for level of staff career development 3.66 also moderate. The findings indicate the facilities provided in their workplace and staff career development requires improvements. Overall, the level of work environment is moderate, and it needs an improvement in term of facilities.Keywords: environment, human resources, multi-ethnic preschool, quality teacher
Procedia PDF Downloads 33117620 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 3517619 Developing and integrated Clinical Risk Management Model
Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei
Abstract:
Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.Keywords: failure modes and effective analysis, risk management, root cause analysis, model
Procedia PDF Downloads 25217618 An Agent-Based Modeling and Simulation of Human Muscle
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness
Procedia PDF Downloads 11717617 The Factors That Influence the Self-Sufficiency and the Self-Efficacy Levels among Oncology Patients
Authors: Esra Danaci, Tugba Kavalali Erdogan, Sevil Masat, Selin Keskin Kiziltepe, Tugba Cinarli, Zeliha Koc
Abstract:
This study was conducted in a descriptive and cross-sectional manner to determine that factors that influence the self-efficacy and self-sufficiency levels among oncology patients. The research was conducted between January 24, 2017 and September 24, 2017 in the oncology and hematology departments of a university hospital in Turkey with 179 voluntary inpatients. The data were collected through the Self-Sufficiency/Self-Efficacy Scale and a 29-question survey, which was prepared in order to determine the sociodemographic and clinical properties of the patients. The Self-Sufficiency/Self-Efficacy Scale is a Likert-type scale with 23 articles. The scale scores range between 23 and 115. A high final score indicates a good self-sufficiency/self-efficacy perception for the individual. The data were analyzed using percentage analysis, one-way ANOVA, Mann Whitney U-test, Kruskal Wallis test and Tukey test. The demographic data of the subjects were as follows: 57.5% were male and 42.5% were female, 82.7% were married, 46.4% were primary school graduate, 36.3% were housewives, 19% were employed, 93.3% had social security, 52.5% had matching expenses and incomes, 49.2% lived in the center of the city. The mean age was 57.1±14.6. It was determined that 22.3% of the patients had lung cancer, 19.6% had leukemia, and 43.6% had a good overall condition. The mean self-sufficiency/self-efficacy score was 83,00 (41-115). It was determined that the patients' self-sufficiency/self-efficacy scores were influenced by some of their socio-demographic and clinical properties. This study has found that the patients had high self-sufficiency/self-efficacy scores. It is recommended that the nursing care plans should be developed to improve their self-sufficiency/self-efficacy levels in the light of the patients' sociodemographic and clinical properties.Keywords: oncology, patient, self-efficacy, self-sufficiency
Procedia PDF Downloads 17417616 Application of the Sufficiency Economy Philosophy to Integrated Instructional Model of In-Service Teachers of Schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office
Authors: Kathaleeya Chanda
Abstract:
The schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn in Nakhonnayok Educational Service Area Office are the small schools, situated in a remote and undeveloped area.Thus, the school-age youth didn’t have or have fewer opportunities to study at the higher education level which can lead to many social and economic problems. This study aims to solve these educational issues of the schools, under The Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office, by the development of teachers, so that teachers could develop teaching and learning system with the ultimate goal to increase students’ academic achievement, increase the educational opportunities for the youth in the area, and help them learn happily. 154 in-service teachers from 22 schools and 4 different districts in Nakhonnayok participated in this teacher training. Most teachers were satisfied with the training content and the trainer. Thereafter, the teachers were given the test to assess the skills and knowledge after training. Most of the teachers earned a score higher than 75%. Accordingly, it can be concluded that after attending the training, teachers have a clear understanding of the contents. After the training session, the teachers have to write a lesson plan that is integrated or adapted to the Sufficiency Economy Philosophy. The teachers can either adopt intradisciplinary or interdisciplinary integration according to their actual teaching conditions in the school. Two weeks after training session, the researchers went to the schools to discuss with the teachers and follow up the assigned integrated lesson plan. It was revealed that the progress of integrated lesson plan could be divided into 3 groups: 1) the teachers who have completed the integrated lesson plan, but are concerned about the accuracy and consistency, 2) teachers who almost complete the lesson plan or made a great progress but are still concerned, confused in some aspects and not fill in the details of the plan, and 3), the teachers who made few progress, are uncertain and confused in many aspects, and may had overloaded tasks from their school. However, a follow-up procedure led to the commitment of teachers to complete the lesson plan. Regarding student learning assessment, from an experiment teaching, most of the students earned a score higher than 50 %. The rate is higher than the one from actual teaching. In addition, the teacher have assessed that the student is happy, enjoys learning, and providing a good cooperates in teaching activities. The students’ interview about the new lesson plan shows that they are happy with it, willing to learn, and able to apply such knowledge in daily life. Integrated lesson plan can increases the educational opportunities for youth in the area.Keywords: sufficiency, economy, philosophy, integrated education syllabus
Procedia PDF Downloads 19117615 The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints
Authors: Hicham Benamirouche, Oum Elkheir Moussi
Abstract:
The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.Keywords: natural gas exports, elasticity, ARDL bounds testing, break points, Algeria
Procedia PDF Downloads 20517614 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data
Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park
Abstract:
We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence
Procedia PDF Downloads 44717613 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 32017612 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 19017611 Model Estimation and Error Level for Okike’s Merged Irregular Transposition Cipher
Authors: Okike Benjamin, Garba E. J. D.
Abstract:
The researcher has developed a new encryption technique known as Merged Irregular Transposition Cipher. In this cipher method of encryption, a message to be encrypted is split into parts and each part encrypted separately. Before the encrypted message is transmitted to the recipient(s), the positions of the split in the encrypted messages could be swapped to ensure more security. This work seeks to develop a model by considering the split number, S and the average number of characters per split, L as the message under consideration is split from 2 through 10. Again, after developing the model, the error level in the model would be determined.Keywords: merged irregular transposition, error level, model estimation, message splitting
Procedia PDF Downloads 31617610 3D Multimedia Model for Educational Design Engineering
Authors: Mohanaad Talal Shakir
Abstract:
This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education
Procedia PDF Downloads 62517609 Parameter Estimation in Dynamical Systems Based on Latent Variables
Authors: Arcady Ponosov
Abstract:
A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.Keywords: generalized law of mass action, metamodels, principal components, synergetic systems
Procedia PDF Downloads 36017608 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model
Authors: Zhidong Zhang, Yingchen Yang
Abstract:
In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes
Procedia PDF Downloads 15517607 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills
Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin
Abstract:
When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.Keywords: metacognitive thinking skills, procedural knowledge, conditional knowledge, meta-teaching and regulation of cognitive
Procedia PDF Downloads 41317606 The Impact of Audit Committee Industry Expertise on Internal Audit Function
Authors: Abdulaziz Alzeban
Abstract:
This study examines whether internal audit function is indeed greater when audit committee members have industry expertise combined with auditing expertise. Data from a survey of 64 chief internal auditors from companies registered on the Saudi Stock Exchange TADAWL, provides results that suggest that when audit committee members possess both industry expertise and auditing expertise, the committee’s role in improving the quality of internal audit is enhanced. This outcome is concluded as one that can be generalized beyond the Saudi Arabian context.Keywords: internal audit, audit committee, industry expertise, function
Procedia PDF Downloads 35917605 Modelling Residential Space Heating Energy for Romania
Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala
Abstract:
This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies
Procedia PDF Downloads 54517604 Ecosystem Model for Environmental Applications
Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru
Abstract:
This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision-making.Keywords: ecosystem model, environmental security, fuzzy logic, sustainability of habitable regions
Procedia PDF Downloads 42717603 Mathematical and Numerical Analysis of a Nonlinear Cross Diffusion System
Authors: Hassan Al Salman
Abstract:
We consider a nonlinear parabolic cross diffusion model arising in applied mathematics. A fully practical piecewise linear finite element approximation of the model is studied. By using entropy-type inequalities and compactness arguments, existence of a global weak solution is proved. Providing further regularity of the solution of the model, some uniqueness results and error estimates are established. Finally, some numerical experiments are performed.Keywords: cross diffusion model, entropy-type inequality, finite element approximation, numerical analysis
Procedia PDF Downloads 38817602 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 16217601 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 38717600 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System
Authors: Abdulrazzak Akroot, Lutfu Namli
Abstract:
Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis
Procedia PDF Downloads 15617599 Identifying Risk Factors for Readmission Using Decision Tree Analysis
Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka
Abstract:
This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.Keywords: decision tree, hospital, internal medicine, readmission
Procedia PDF Downloads 26317598 Research on Audiovisual Perception in Stairway Spaces of Mountain City Parks Based on Real-Scene EEG Monitoring
Authors: Yang Xinyu, Gong Cong, Hu Changjuan
Abstract:
Stairway spaces are a crucial component of the pathway systems and vertical transportation networks in mountain city parks. These spaces are closely integrated with the undulating terrain of mountain environments, resulting in continuously changing spatial conditions that can significantly influence participants' behavioral characteristics, thereby affecting their perception. EEG signals, which have been proven to reflect various non-attentive physiological activities in the brain, are widely used in studies related to stress recovery effects and emotional perception. Existing research predominantly examines the impact of spatial characteristics and landscape elements of trails and greenways in plain cities on participants' perception, utilizing EEG signals in laboratory-simulated environments. These studies have preliminarily revealed the relationship between spatial environments and perception preferences. However, on-site ergonomics research in mountain environments remains relatively underdeveloped. To address this gap, the Stairway spaces in Pipashan Park, Chongqing, were selected as the research object. Wearable hydrogel EEG devices were employed to monitor participants' EEG data in real environments, and a Generalized Linear Mixed Model (GLMM) was constructed to explore differences in participants' perception under different paths and modes of movement, as well as the impact of visual and auditory environmental elements within each path on their perception. The model analysis results indicate significant differences in EEG data across different paths and movement modes. Additionally, typical mountainous spatial characteristics, such as openness, green view index, and elevation difference, are identified as key factors influencing participants' EEG data. Higher levels of natural sound and green view index were shown to effectively alleviate participants' stress perception in mountain stairway spaces. The findings reveal the intrinsic connections between environment, behavior, and perception in stairway spaces of mountain city parks, providing a theoretical basis for optimizing the design of stairway spaces in mountain cities.Keywords: audio-visual perception, EEG monitoring, mountain city park, real environment, stairway space
Procedia PDF Downloads 2317597 Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model
Authors: Mustapha Kamel Mihoubi, Hocine Dahmani
Abstract:
The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor.Keywords: agitation, Boussinesq equations, combination, harbor
Procedia PDF Downloads 39517596 Bottling the Darkness of Inner Life: Considering the Origins of Model Psychosis
Authors: Matthew Perkins-McVey
Abstract:
The pharmacological arm of mental health treatment is in a state of crisis. The promises of the Prozac century have fallen short; the number of different therapeutically significant medications that successfully complete development shrinks with every passing year, and the demand for better treatments only grows. Answering these hardships is a renewed optimism concerning the efficacy of controlled psychedelic therapy, a renaissance that has seen the return of a familiar concept: intoxication as a model psychosis. First appearing in the mid-19th century and featuring in an array of 20th century efforts in psychedelic research, model psychosis has, once more, come to the foreground of psychedelic research. And yet, little has been made of where this peculiar, perhaps even intoxicatingly mad, the idea originates. This paper seeks to uncover the conceptual foundations underlying the early emergence of model psychosis. This narrative will explore the conceptual foundations behind their independent development of the concept of model psychosis, considering their similarities and differences. In the course of this examination, it becomes apparent that the definition of endogenous psychosis, which formed in the mid-19th century, is the direct product of emerging understandings of exogenous psychosis, or model psychosis. Ultimately, the goal is not merely to understand how and why model psychosis became thinkable but to examine how seemingly secondary concept changes can engender new ways of being a psychiatric subject.Keywords: history of psychiatry, model psychosis, history of medicine, history of science
Procedia PDF Downloads 9617595 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference
Authors: Jang kyun Cho, Jeong-dong Lee
Abstract:
The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.Keywords: innovation diffusion, agent based model, small-world network, demand forecasting
Procedia PDF Downloads 34217594 A Word-to-Vector Formulation for Word Representation
Authors: Sandra Rizkallah, Amir F. Atiya
Abstract:
This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.Keywords: natural language processing, word to vector, text similarity, text mining
Procedia PDF Downloads 27917593 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service
Authors: Liwen Hou
Abstract:
The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.Keywords: online recommendation, P2P taxi service, review-writing, word of mouth
Procedia PDF Downloads 31117592 Maternal Health Outcome and Economic Growth in Sub-Saharan Africa: A Dynamic Panel Analysis
Authors: Okwan Frank
Abstract:
Maternal health outcome is one of the major population development challenges in Sub-Saharan Africa. The region has the highest maternal mortality ratio, despite the progressive economic growth in the region during the global economic crisis. It has been hypothesized that increase in economic growth will reduce the level of maternal mortality. The purpose of this study is to investigate the existence of the negative relationship between health outcome proxy by maternal mortality ratio and economic growth in Sub-Saharan Africa. The study used the Pooled Mean Group estimator of ARDL Autoregressive Distributed Lag (ARDL) and the Kao test for cointegration to examine the short-run and long-run relationship between maternal mortality and economic growth. The results of the cointegration test showed the existence of a long-run relationship between the variables considered for the study. The long-run result of the Pooled Mean group estimates confirmed the hypothesis of an inverse relationship between maternal health outcome proxy by maternal mortality ratio and economic growth proxy by Gross Domestic Product (GDP) per capita. Thus increasing economic growth by investing in the health care systems to reduce pregnancy and childbirth complications will help reduce maternal mortality in the sub-region.Keywords: economic growth, maternal mortality, pool mean group, Sub-Saharan Africa
Procedia PDF Downloads 161