Search results for: event extraction and understanding
8512 Comparison of Numerical and Laboratory Results of Pull-Out Test on Soil–Geogrid Interactions
Authors: Parisa Ahmadi Oliaei, Seyed Abolhassan Naeini
Abstract:
The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the Pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the Pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of Pull- out a test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.Keywords: plaxis, pull-out test, sand, soil- geogrid interaction
Procedia PDF Downloads 1708511 What Smart Can Learn about Art
Authors: Faten Hatem
Abstract:
This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy
Procedia PDF Downloads 1198510 Microwave Sintering and Its Application on Cemented Carbides
Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi
Abstract:
Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties
Procedia PDF Downloads 5978509 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 348508 Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils
Authors: Seyed Abolhasan Naeini, Mohammad Mahdi Shojaedin
Abstract:
Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.Keywords: cyclic triaxial test, liquefaction resistance, oil contamination, sandy soil
Procedia PDF Downloads 5298507 Extraction, Isolation and Comparative Phtochemical Study of Aegle Marmelos, Calendula Officinalis and Fenugreek
Authors: Nitin Rajan, Kashif Shakeel, Shashank Tiwari, Shachan Sagar
Abstract:
Background: - Aegle Marmelos (Bael) leaf extract is taken twice daily to treat ophthalmia, ulcers, and intestinal worms, among other ailments. Poultice made from bael leaf is used in the treatment of eye conditions. The leaf juice has a variety of therapeutic applications, with the most notable being the treatment of diabetes. Fenugreek is used to cure red spots around the eyes, as well as to soften the throat and chest and to give relief from coughing. The use of this plant in the form of infusion, powder, pomade, and decoction has been extremely popular in Iranian traditional medicine. The plant may be used to wash one's vaginal linings. This plant is used as an emollient in the lack of appetite, treatment of pellagra, and gastrointestinal problems, as well as a general tonic. Calendula officinalis leaves are used to treat varicose veins on the outside of the body by infusing them. In Europe, the leaves are diaphoretic and resolvent in nature, while the blooms are employed as an emmenagogue and antispasmodic stimulant in Canada and the United States. The flowers were decocted and served as a posset drink when smallpox and measles were common in England, and the fresh juice was used to treat jaundice. Objective: - This study is done to compare the physicochemical parameter of the alcoholic extract of the leaves of Aegle Marmelos, Calendula Officinalis, and Fenugreek. Materials and Methods: Extraction and Isolation of Aegle Marmelos, Calendula Officinalis, Fenugreek, were done. Preliminary phytochemical study for alkaloids, cardiac glycosides, flavonoids, glycosides, phenols, resins, saponins, steroids, tannins, terpenoids of the extract was done individual by using the standard procedure. Result: - The phytochemical screening of Aegle Marmelos, Calendula Officinalis, and Fenugreek shows the presence of alkaloids, carbohydrates, total phenolics, total flavonoids, tannins, saponins gum. Conclusion: - In this study, we have found that crude aqueous and organic solvent extracts of Aegle Marmelos, Calendula Officinalis, and Fenugreek leaves contain some important bioactive compounds and it justifies their use in the traditional medicines for the treatment of different diseases.Keywords: Aegle Marmelos, Calendula Officinalis, Fenugreek, physiochemical parameter
Procedia PDF Downloads 1558506 Understanding Algerian International Student Mental Health Experiences in UK (United Kingdom) Universities: Difficulties of Disclosure, Help-Seeking and Coping Strategies
Authors: Nesrine Boussaoui
Abstract:
Background: International students often encounter challenges while studying in the UK, including communication and language barriers, lack of social networks, and socio-cultural differences that adversely impact on their mental health. For Algerian international students (AISs), these challenges may be heightened as English is not their first language and the culture of their homeland is substantially different from British culture, yet research has to incorporate their experiences and perspectives. Aim: The current study aimed to explore AISs’ 1) understandings of mental health; 2) issues of disclosure for mental health difficulties; and 3) mental health help-seeking and coping strategies. Method: In-depth, audio recorded semi-structured interviews (n = 20) with AISs in UK universities were conducted. An inductive, reflective thematic approach analysis was used. Finding: The following themes and associated sub-themes were developed: (1) Algerian cultural influences on mental health understanding(socio-cultural comparisons); (2) the paradox of the family (pressure vs. support); (3) stigma and fear of disclosure; (4) Barriers to formal help-seeking (informal disclosure as first step to seeking help); (5) Communication barriers (resort to mother tongue to disclose); (6) Self-reliance and religious coping. Conclusion: Recognising and understanding the challenges faced by AISs in terms of disclosure and mental health help-seeking is essential to reduce barriers to formal help-seeking. Informal disclosure among peers is often the first step to seeking help. Enhancing practitioners’ cultural competences and awareness of diverse understandings of mental health and the role of religious coping among AISs’ may have transferable benefits to a wider international student population.Keywords: mental health, stegma, coping, disclosure
Procedia PDF Downloads 1428505 Analysis and Quantification of Historical Drought for Basin Wide Drought Preparedness
Authors: Joo-Heon Lee, Ho-Won Jang, Hyung-Won Cho, Tae-Woong Kim
Abstract:
Drought is a recurrent climatic feature that occurs in virtually every climatic zone around the world. Korea experiences the drought almost every year at the regional scale mainly during in the winter and spring seasons. Moreover, extremely severe droughts at a national scale also occurred at a frequency of six to seven years. Various drought indices had developed as tools to quantitatively monitor different types of droughts and are utilized in the field of drought analysis. Since drought is closely related with climatological and topographic characteristics of the drought prone areas, the basins where droughts are frequently occurred need separate drought preparedness and contingency plans. In this study, an analysis using statistical methods was carried out for the historical droughts occurred in the five major river basins in Korea so that drought characteristics can be quantitatively investigated. It was also aimed to provide information with which differentiated and customized drought preparedness plans can be established based on the basin level analysis results. Conventional methods which quantifies drought execute an evaluation by applying a various drought indices. However, the evaluation results for same drought event are different according to different analysis technique. Especially, evaluation of drought event differs depend on how we view the severity or duration of drought in the evaluation process. Therefore, it was intended to draw a drought history for the most severely affected five major river basins of Korea by investigating a magnitude of drought that can simultaneously consider severity, duration, and the damaged areas by applying drought run theory with the use of SPI (Standardized Precipitation Index) that can efficiently quantifies meteorological drought. Further, quantitative analysis for the historical extreme drought at various viewpoints such as average severity, duration, and magnitude of drought was attempted. At the same time, it was intended to quantitatively analyze the historical drought events by estimating the return period by derived SDF (severity-duration-frequency) curve for the five major river basins through parametric regional drought frequency analysis. Analysis results showed that the extremely severe drought years were in the years of 1962, 1988, 1994, and 2014 in the Han River basin. While, the extreme droughts were occurred in 1982 and 1988 in the Nakdong river basin, 1994 in the Geumg basin, 1988 and 1994 in Youngsan river basin, 1988, 1994, 1995, and 2000 in the Seomjin river basin. While, the extremely severe drought years at national level in the Korean Peninsula were occurred in 1988 and 1994. The most damaged drought were in 1981~1982 and 1994~1995 which lasted for longer than two years. The return period of the most severe drought at each river basin was turned out to be at a frequency of 50~100 years.Keywords: drought magnitude, regional frequency analysis, SPI, SDF(severity-duration-frequency) curve
Procedia PDF Downloads 4068504 Reliability of Clinical Coding in Accurately Estimating the Actual Prevalence of Adverse Drug Event Admissions
Authors: Nisa Mohan
Abstract:
Adverse drug event (ADE) related hospital admissions are common among older people. The first step in prevention is accurately estimating the prevalence of ADE admissions. Clinical coding is an efficient method to estimate the prevalence of ADE admissions. The objective of the study is to estimate the rate of under-coding of ADE admissions in older people in New Zealand and to explore how clinical coders decide whether or not to code an admission as an ADE. There has not been any research in New Zealand to explore these areas. This study is done using a mixed-methods approach. Two common and serious ADEs in older people, namely bleeding and hypoglycaemia were selected for the study. In study 1, eight hundred medical records of people aged 65 years and above who are admitted to hospital due to bleeding and hypoglycemia during the years 2015 – 2016 were selected for quantitative retrospective medical records review. This selection was made to estimate the proportion of ADE-related bleeding and hypoglycemia admissions that are not coded as ADEs. These files were reviewed and recorded as to whether the admission was caused by an ADE. The hospital discharge data were reviewed to check whether all the ADE admissions identified in the records review were coded as ADEs, and the proportion of under-coding of ADE admissions was estimated. In study 2, thirteen clinical coders were selected to conduct qualitative semi-structured interviews using a general inductive approach. Participants were selected purposively based on their experience in clinical coding. Interview questions were designed in a way to investigate the reasons for the under-coding of ADE admissions. The records review study showed that 35% (Cl 28% - 44%) of the ADE-related bleeding admissions and 22% of the ADE-related hypoglycemia admissions were not coded as ADEs. Although the quality of clinical coding is high across New Zealand, a substantial proportion of ADE admissions were under-coded. This shows that clinical coding might under-estimate the actual prevalence of ADE related hospital admissions in New Zealand. The interviews with the clinical coders added that lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing might be the potential reasons for the under-coding of the ADE admissions. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. These results highlight that further work is needed on interventions to improve the clinical coding of ADE admissions, such as providing education to coders about the importance of ADEs, education to clinicians about the importance of clear and confirmed medical records entries, availing pharmacist service to improve the detection and clear documentation of ADE admissions and including a mandatory field in the discharge summary about external causes of diseases.Keywords: adverse drug events, bleeding, clinical coders, clinical coding, hypoglycemia
Procedia PDF Downloads 1308503 Future Metro Station: Remodeling Underground Environment Based on Experience Scenarios and IoT Technology
Authors: Joo Min Kim, Dongyoun Shin
Abstract:
The project Future Station (FS) seek for a deeper understanding of metro station. The main idea of the project is enhancing the underground environment by combining new architectural design with IoT technology. This research shows the understanding of the metro environment giving references regarding traditional design approaches and IoT combined space design. Based on the analysis, this research presents design alternatives in two metro stations those are chosen for a testbed. It also presents how the FS platform giving a response to travelers and deliver the benefit to metro operators. In conclusion, the project describes methods to build future metro service and platform that understand traveler’s intentions and giving appropriate services back for enhancing travel experience. It basically used contemporary technology such as smart sensing grid, big data analysis, smart building, and machine learning technology.Keywords: future station, digital lifestyle experience, sustainable metro, smart metro, smart city
Procedia PDF Downloads 2998502 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 748501 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1228500 EhfadHaya (SaveLife) / AateHayah (GiveLife) Blood Donor Website
Authors: Sameer Muhammad Aslam, Nura Said Mohsin Al-Saifi
Abstract:
This research shows the process of creating a blood donation website for Oman. Blood donation is a widespread, crucial, ongoing process, so it is important that this website is easy to use. Several automated blood management systems are available, but none provides an effective algorithm that takes into account variables such as frequency of donation, donation date, and gender. In Oman, the Ministry of Health maintains a blood bank and keeps donors informed about the need for blood through a website. They also inform donors and the wider public where and when is their next blood donation event. The website's main goals are to educate the community about the benefits of blood donation. It also manages donor and receiver documentation and encourages voluntary blood donation by providing easy access to information about blood types and blood distribution in various hospitals in Oman, based on hospital needs.Keywords: Oman, blood bank, blood donors, donor website
Procedia PDF Downloads 2178499 An Integrated Emergency Management System for the Tourism Industry in Oman
Authors: Majda Al Salti
Abstract:
Tourism industry is considered globally as one of the leading industries due to its noticeable contribution to countries' gross domestic product (GDP) and job creation. However, tourism is vulnerable to crisis and disaster that requires its preparedness. With its limited capabilities, there is a need to improve links and the understanding between the tourism industry and the emergency services, thus facilitating future emergency response to any potential incident. This study aims to develop the concept of an integrated emergency management system for the tourism industry. The study used face-to-face semi-structured interviews to evaluate the level of crisis and disaster preparedness of the tourism industry in Oman. The findings suggested that there is a lack of understanding of crisis and disaster management, and hence preparedness level among Oman Tourism Authorities appears to be under-expectation. Therefore, a clear need for tourism sector inter- and intra-integration and collaboration is important in the pre-disaster stage. The need for such integrations can help the tourism industry in Oman to prepare for future incidents as well as identifying its requirements in time of crisis for effective response.Keywords: tourism, emergency services, crisis, disaster
Procedia PDF Downloads 1198498 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 3028497 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3348496 Tornadic Waterspout Impacts on Coastal Zones
Authors: Matthew J. Glanville, Christian J. Rohr
Abstract:
Coastal waterspout activity is known to occur globally over a wide climatic range. This study has focussed on recent tornadic waterspout activity along the temperate New South Wales coastline of Australia. Recent tornadic waterspout impacts were surveyed at Kurnell, Kiama, and Lennox Head in coastal New South Wales and are thought to have formed either wholly or partly offshore. It is proposed that a warm, moist layer of air at the sea surface creates more unstable atmospheric conditions than would an approaching supercell path over land, and hence a greater propensity to generate a tornadic event. Measured and observed wind velocities in the vicinity of 60 ms-1 associated with the observed tornadic waterspouts are considerably higher in magnitude than the basic wind speed presented in AS1170.2 for an estimated return period of 2000 years in Region A.Keywords: coastal, survey, tornadic, waterspout
Procedia PDF Downloads 2258495 A Study on Puzzle-Based Game to Teach Elementary Students to Code
Authors: Jaisoon Baek, Gyuhwan Oh
Abstract:
In this study, we developed a puzzle game based on coding and a web-based management system to observe the user's learning status in real time and maximize the understanding of the coding of elementary students. We have improved upon and existing coding game which cannot be connected to textual language coding or comprehends learning state. We analyzed the syntax of various coding languages for the curriculum and provided a menu to convert icon into textual coding languages. In addition, the management system includes multiple types of tutoring, real-time analysis of user play data and feedback. Following its application in regular elementary school software classes, students reported positive effects on understanding and interest in coding were shown by students. It is expected that this will contribute to quality improvement in software education by providing contents with proven educational value by breaking away from simple learning-oriented coding games.Keywords: coding education, serious game, coding, education management system
Procedia PDF Downloads 1418494 Understanding the Strategies Underpinning the Marketing of E-Cigarettes: A Content Analysis of Video Advertisements
Authors: Laura Struik, Sarah Dow-Fleisner, Robert Janke
Abstract:
Introduction: The use of e-cigarettes, also known as vaping, has risen exponentially among North American youth and young adults (YYA) in recent years and has become a critical public health concern. The marketing strategies used by e-cigarette companies have been associated with the uptick in use among YYA, with video advertisements on TV and other electronic platforms being the most pervasive strategy. It is unknown if or how these advertisements capitalize on the recently documented multi-faceted influences that contribute to the initiation of vaping among this demographic (e.g., stress, anxiety, gender, peers, etc.), which is examined in this study. Methods: This content analysis is phase one of a two-phased research project that aims to inform meaningful approaches to anti-vaping messaging and campaigns. As part of this first phase, a scoping review has been conducted to identify various influences (environmental, cognitive, contextual, social, and emotional) on e-cigarette uptake among YYA. The results of this scoping review will inform the development of a coding framework to analyze the multiple influences present in vaping advertisements, as seen on two popular television channels (Discovery and AMC). In addition, advertisement characteristics will be incorporated into the coding framework (e.g., the number of people present, demographic details, context, and setting, etc.), and analyzed. Findings: Findings will reveal the types of influences being leveraged in vaping advertisements, and identify the underlying messages that may be particularly attractive to YYA. This will contribute to a more nuanced understanding of how e-cigarette companies market their products and to whom. The results will also inform the next phase of this research project, which will encompass an analysis of anti-vaping advertisements and how the underpinning strategies align with those of the pro-vaping advertisements. Conclusions: Findings of this will study bring forward important implications for developing effective anti-vaping messages, and assist public health professionals in providing more comprehensive prevention and cessation support as it relates to e-cigarette use. Understanding which marketing strategies e-cigarette companies use is vital to our understanding of how to combat them. Findings will inform recommendations for public health efforts aimed at curbing e-cigarette use among YYA, and ultimately contribute to the health and well-being of YYA.Keywords: e-cigarettes, youth and young adults, advertisements, public health
Procedia PDF Downloads 1218493 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion
Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse
Abstract:
Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).Keywords: nanolignin, nanoparticles, organosolv, steam explosion
Procedia PDF Downloads 1308492 Quality Management and Service Organization
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.Keywords: quality, control, service, management, teamwork
Procedia PDF Downloads 548491 Physicochemical Profile of Essential Oil of Daucus carota
Authors: Nassima Behidj-Benyounes, Thoraya Dahmene
Abstract:
Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physic-chemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC/MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).Keywords: daucus carota, essential oil, α-pinene, carotol, limonene
Procedia PDF Downloads 3838490 Beyond Text: Unveiling the Emotional Landscape in Academic Writing
Authors: Songyun Chen
Abstract:
Recent scholarly attention to sentiment analysis has provided researchers with a deeper understanding of how emotions are conveyed in writing and leveraged by academic authors as a persuasive tool. Using the National Research Council (NRC) Sentiment Lexicons (version 1.0) created by the National Research Council Canada, this study examined specific emotions in research articles (RAs) across four disciplines, including literature, education, biology, and computer & information science based on four datasets totaling over three million tokens, aiming to reveal how the emotions are conveyed by authors in academic writing. The results showed that four emotions—trust, anticipation, joy, and surprise—were observed in all four disciplines, while sadness emotion was spotted solely in literature. With the emotion of trust being overwhelmingly prominent, the rest emotions varied significantly across disciplines. The findings contribute to our understanding of emotion strategy applied in academic writing and genre characteristics of RAs.Keywords: sentiment analysis, specific emotions, emotional landscape, research articles, academic writing
Procedia PDF Downloads 298489 Evaluate the Influence of Culture on the Choice of Capital Structure Management Companies
Authors: Sahar Jami, Iman Valizadeh
Abstract:
The purpose of the study: The aim of this study was to evaluate the influence of culture on the choice of capital structure management companies are listed in the Tehran Stock Exchange. Methods: This study was a cross-document using data after the event (Retrospective) in 1394 was performed. To select a sample of elimination sampling (screening) is used to determine the sample size was 123 companies. Results: The results showed that the variables of culture, return on equity, a significant positive impact on the capital structure (ROA, QTobins) and financial leverage and firm size variables and a significant negative impact on the capital structure (ROA, QTobins).Keywords: culture management, capital structure, ROA, QTobins, variables of culture
Procedia PDF Downloads 4678488 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge
Authors: K. Eryilmaz, G. Mercanoglu
Abstract:
Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis
Procedia PDF Downloads 1638487 A Survey on Types of Noises and De-Noising Techniques
Authors: Amandeep Kaur
Abstract:
Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.Keywords: de-noising techniques, edges, image, image processing
Procedia PDF Downloads 3368486 Structural Analysis and Modelling in an Evolving Iron Ore Operation
Authors: Sameh Shahin, Nannang Arrys
Abstract:
Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation
Procedia PDF Downloads 478485 Issues in Translating Hadith Terminologies into English: A Critical Approach
Authors: Mohammed Riyas Pp
Abstract:
This study aimed at investigating major issues in translating the Arabic Hadith terminologies into English, focusing on choosing the most appropriate translation for each, reviewing major Hadith works in English. This study is confined to twenty terminologies with regard to classification of Hadith based on authority, strength, number of transmitters and connections in Isnad. Almost all available translations are collected and analyzed to find the most proper translation based on linguistic and translational values. To the researcher, many translations lack precise understanding of either Hadith terminologies or English language and varieties of methodologies have influence on varieties of translations. This study provides a classification of translational and conceptual issues. Translational issues are related to translatability of these terminologies and their equivalence. Conceptual issues provide a list of misunderstandings due to wrong translations of terminologies. This study ends with a suggestion for unification in translating terminologies based on convention of Muslim scholars having good understanding of Hadith terminologies and English language.Keywords: english language, hadith terminologies, equivalence in translation, problems in translation
Procedia PDF Downloads 1888484 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach
Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar
Abstract:
Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry
Procedia PDF Downloads 3178483 A Development of a Conceptual Framework for Safety Culture and Safety Risk Assessment: The Case of Chinese International Construction Projects under the “New Belt and Road” Initiative in Africa
Authors: Bouba Oumarou Aboubakar, HongXia Li, Sardar Annes Farooq
Abstract:
The Belt and Road Initiative’s success strongly depends on the safety of all the million workers on construction projects sites. As the new BRI is directed toward Africa and meets a completely different culture from the Chinese project managers, maintaining low risk for workers risks shall be closely related to cultural sharing and mutual understanding. This is why this work introduces a cultural-wise safety management framework for Chinese Construction projects in Africa. The theoretical contribution of this paper is an improved risk assessment framework that integrates language, culture and difficulty of controlling risk factors into one approach. Practically, this study provides not only a useful tool for project safety management practitioners but the full understanding of all risks that may arise in the BRI projects in Africa.Keywords: cultural-wise, safety culture, risk assessment, Chinese construction, BRI projects, Africa
Procedia PDF Downloads 107