Search results for: circulating density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3629

Search results for: circulating density

2249 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 142
2248 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 64
2247 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 133
2246 Correlation between Body Mass Index and Blood Sugar/Serum Lipid Levels in Fourth-Grade Boys in Japan

Authors: Kotomi Yamashita, Hiromi Kawasaki, Satoko Yamasaki, Susumu Fukita, Risako Sakai

Abstract:

Lifestyle-related diseases develop from the long-term accumulation of health consequences from a poor lifestyle. Thus, schoolchildren, who have not accumulated long-term lifestyle habits, are believed to be at a lower risk for lifestyle-related diseases. However, schoolchildren rarely receive blood tests unless they are under treatment for a serious disease; without such data on their blood, the impacts of their young lifestyle could not be known. Blood data from physical measurements can help in the implementation of more effective health education. Therefore, we examined the correlation between body mass index (BMI) and blood sugar/serum lipid (BS/SL) levels. From 2014 to 2016, we measured the blood data of fourth-grade students living in a city in Japan. The present study reported on the results of 281 fourth-grade boys only (80.3% of total). We analyzed their BS/SL levels by comparing the blood data against the criteria of the National Center for Child Health and Development in Japan. Next, we examined the correlation between BMI and BS/SL levels. IBM SPSS Statistics for Windows, Version 25 was used for analysis. A total of 69 boys (24.6%) were within the normal range for BMI (18.5–24), whereas 193 (71.5%) and 8 boys (2.8%) had lower and higher BMI, respectively. Regarding BS levels, 280 boys were within the normal range (70–90 mg/dl); 1 boy reported a higher value. All the boys were within the normal range for glycated Hemoglobin (HbA1c) (4.6–6.2%). Regarding SL levels, 271 boys were within the normal range (125–230 mg/dl) for total cholesterol (TC), whereas 5 boys (1.8%) had lower and 5 boys (1.8%) had higher levels. A total of 243 boys (92.7%) were within the normal range (36-138mg/dL) for triglycerides (TG), whereas 19 boys (7.3%) had lower and 19 boys (7.3%) had higher levels. Regarding high-density lipoprotein cholesterol (HDL-C), 276 boys (98.2%) were within the normal range (40-mg/dl), whereas 5 boys (1.8%) reported lower values. All but one boy (280, 99.6%) were within the normal range (-170 mg/dl) for low-density lipoprotein cholesterol (LDL-C); the exception (0.4%) had a higher level. BMI and BS didn’t show a correlation. BMI and HbA1c were moderately positively correlated (r = 0.139, p=0.019). We also observed moderate positive correlations between BMI and TG (r = 0.328, p < 0.01), TC (r=0.239, p< 0.01), LDL-C (r = 0.324, p < 0.01), respectively. BMI and HDL-C were low correlated (r = -0.185, p = 0.002). Most of the boys were within the normal range for BS/SL levels. However, some boys exceeded the normal TG range. Fourth graders with a high TG may develop a lifestyle-related disease in the future. Given its relation to TG, food habits should be improved in this group. Our findings suggested a positive correlation between BMI and BS/SL levels. Fourth-grade schoolboys with a high BMI may be at high risk for developing lifestyle-related diseases. Lifestyle improvement may be recommended to lower the BS/SL levels in this group.

Keywords: blood sugar level, lifestyle-related diseases, school students, serum lipid level

Procedia PDF Downloads 139
2245 Multiple-Lump-Type Solutions of the 2D Toda Equation

Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique

Abstract:

In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.

Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution

Procedia PDF Downloads 222
2244 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco

Authors: I .Ait El Harch, K. Outaaoui, Y. El Foutayeni

Abstract:

This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.

Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits

Procedia PDF Downloads 27
2243 A Development of Practice Guidelines for Surgical Safety Management to Reduce Undesirable Incidents from Surgical Services in the Operating Room of Songkhla Hospital, Thailand

Authors: Thitima Plejai

Abstract:

The practice in the operating room has been continually performed according to standards of services; however, undesirable incidents from surgical services are found such as surgical complications in the operating room. This participation action research aimed to develop practice guidelines for surgical safety management to reduce undesirable incidents from surgical services in the operating room of Songkhla Hospital. The target population was all 84 members of the multidisciplinary team who were involved in surgical services in the operating room consisting of 28 surgeons from five branches of surgery, 27 anesthetists and nurse anesthetists, and 29 surgical nurses. The data were collected through in-depth interviews, and non-participatory observations. The research instrument was tested by three experts, and the steps of the development consisted of four cycles, each consisting of assessment, planning, practice, practice reflection, and improvement until every step is practicable. The data were validated through triangulation research method, analyzed through content analysis and statistical analysis with number and percentage. The results of the development of practice guidelines surgical safety management to reduce undesirable incidents from surgical services could be concluded as follows. 1) The multidisciplinary team in surgery participated in the needs assessment for development of practice guidelines for surgical patient safety, and agreed on adapting the WHO Surgical Safety Checklists for use. 2) The WHO Surgical Safety Checklists was implemented, and meetings were held for the multidisciplinary team in surgery and the organizational risk committee to improve the practice guidelines to make them more practicable. 3) The multidisciplinary team consisting of surgeons from five branches of surgery, anesthetists, nurse anesthetists, surgical nurses, and the organizational risk committee announced policy on safety for surgical patients; the organizational risk committee designated the Surgical Safety Checklist as an instrument for surgical patient safety. The results of the safety management found that the surgical team members who could follow 100 percent of the guidelines were: professional nurses who checked patient identity and information before taking the patient to the operating room and kept complete records of data on the patients; surgical nurses who checked readiness of the patient before surgery; nurse anesthetists who assessed readiness before administering anesthetic drugs, and confirmed correctness of the patient; and circulating perioperative nurses who gave confirmation to the surgical team after completion of the surgery. The rates of undesirable incidents (surgical complications rates) before and after the implementation of the surgical safety management were 1.60 percent and 0.66 percent, respectively. The satisfaction of the surgery-related teams towards the use of the guidelines was 89 percent. The practice guidelines for surgical safety management to reduce undesirable incidents were taken as guidelines for surgical safety that the multidisciplinary team involved in the surgical process implemented correctly and in the same direction and clearly reduced undesirable incidents in surgical patients.

Keywords: practice guidelines, surgical safety management, reduce undesirable incidents, operating Room

Procedia PDF Downloads 297
2242 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 222
2241 The Ideal Memory Substitute for Computer Memory Hierarchy

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.

Keywords: cache, memory-hierarchy, memory, registers, storage

Procedia PDF Downloads 167
2240 Development of Sb/MWCNT Free Standing Anode for Li-Ion Batteries

Authors: Indu Elizabeth

Abstract:

Antimony/Multi Walled Carbon nano tube nanocomposite (Sb/MWCNT) is synthesized using ethylene glycol mediated reduction process. Binder free, self-supporting and flexible Sb/MWCNT nanocomposite paper has been prepared by employing the vacuum filtration technique. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS), and thermal gravimetric analysis (TGA) to evaluate the structure of anode and tested for its performance in a Lithium rechargeable cell. Electrochemical measurements demonstrate that the Sb/MWCNT composite paper anode delivers a specific discharge capacity of ~400 mAh g-1 up to a current density of 100 mA g-1.

Keywords: antimony, lithium ion battery, multiwalled carbon nanotube, specific capacity

Procedia PDF Downloads 403
2239 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics

Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari

Abstract:

In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.

Keywords: finite element modeling, continuum damage mechanics, indentation, cracks

Procedia PDF Downloads 422
2238 Risk Factors of Hospital Acquired Infection Mortality in a Tunisian Intensive Care Unit

Authors: Ben Cheikh Asma, Bouafia Nabiha, Ammar Asma, Ezzi Olfa, Meddeb Khaoula, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Hospital Acquired Infection (HAI) constitutes an important worldwide health problem. It was associated with high mortality rate in intensive care units (ICU). This study aimed to determine HAI mortality rate in Tunisian intensive care units and identify its risk factors. Methods: We conducted a prospective observational cohort study over a 12 months period (September 15th 2015 to September 15 th 2016) in the adult medical ICU of University Hospital-Farhat Hached (Sousse-Tunisia). All patients admitted in the ICU for more than 48 hours were included in the study. We used an anonymous standardized survey record form to collect data by a medical hygienist assisted by an intensivist. We adopted definitions of Center for Diseases Control and prevention of Atlanta to detect HAI, Kaplan Meier survival analysis and Cox proportional hazard regression to identify independent risk factor of HAI mortality. Results: Of 171 patients, 67 developed ICU-acquired infection (global incidence rate=39.2%). The mean age of patients was 59 ± 21.2 years and 60.8% were male. The most frequently identified infections were pulmonary acquired infection (ventilator associated pneumonia (VAP) and infected atelectasis with density rates 21.4 VAP/1000 days of mechanical ventilation and 9.4 infected atelectasis /1000 days of mechanical ventilation; respectively) and central venous catheter associated infection (CVC - AI) with density rate 28.4 CVC-AI / 1000 CVC-days). HAI mortality rate was 66.7% (n=44). The median survival was 20 days 3.36, 95% Confidential Interval [13.39 – 26.60]. Specific mortality rates according to infectious site were 65.5%, 36.4% and 4.5% respectively for VAP, CVC associated infection and infected atelectasis. In univariate analysis, a significant associations between mortality and cardiovascular history (p=0.04) tracheotomy (p=0.00), peripheral venous catheterization (p=0.04), VAP (p=0.04) and infected atelectasis (p=0.04) were detected. Independent risk factors for HAI mortality were VAP with Hazard Ratio = 3.14, 95% Confidential Interval [1.63 – 6.05] (p=0.001) and tracheotomy (Hazard Ratio=0.22, 95% Confidential Interval [0.10 – 0.44], p=0.000). Conclusions: In the present study, hospital acquired infection mortality rate was relatively high. We need to intensify the fight against these infections especially ventilator-associated pneumonia that is associated with higher risk of mortality in many studies. Thus, more effective infection control interventions were necessary in our hospital.

Keywords: hospital acquired infection, intensive care unit, mortality, risk factors

Procedia PDF Downloads 486
2237 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 84
2236 C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies

Authors: Maziar Noei

Abstract:

Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.

Keywords: sensor, nanotube, DFT, ethylacetylene

Procedia PDF Downloads 249
2235 Formation Mechanism of Macroporous Cu/CuSe and Its Application as Electrocatalyst for Methanol Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The single-step solvothermal method is used to prepare Cu/CuSe as an electrocatalyst for methanol electro-oxidation reaction (MOR). 1,3-butane-diol is selected as a reaction medium, whose viscosity and complex formation with Cu(II) ions dictate the catalyst morphology. The catalyst has a macroporous structure, which is composed of nanoballs with a high purity, crystallinity, and uniform morphology. The electrocatalyst is excellent for MOR, as it delivers a current density of 37.28 mA/mg at a potential of 0.6 V (vs Ag/AgCl) in the electrolyte of 1 M KOH and 0.75 M methanol at a 50 mV/s scan rate under conditions of cyclic voltammetry. The catalyst also shows good stability for 3600 s with negligible charge transfer resistance and a high electrochemical active surface area (ECSA) value of 0.100 mF/cm².

Keywords: MOR, copper selenide, electocatalyst, energy application

Procedia PDF Downloads 63
2234 Power-Aware Adaptive Coverage Control with Consensus Protocol

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.

Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination

Procedia PDF Downloads 354
2233 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator

Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi

Abstract:

The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.

Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator

Procedia PDF Downloads 1476
2232 Ab-Initio Study of Native Defects in SnO Under Strain

Authors: A. Albar, D. B. Granato, U. Schwingenschlogl

Abstract:

Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.

Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor

Procedia PDF Downloads 396
2231 Nafion Nanofiber Mat in a Single Fuel Cell Test

Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani

Abstract:

Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.

Keywords: fuel cell, nafion, nanofiber, permeability

Procedia PDF Downloads 482
2230 Study of Ether Species Effects on Physicochemical Properties of Palm Oil Ether Monoesters as Novel Biodiesels

Authors: Hejun Guo, Shenghua Liu

Abstract:

Five palm oil ether monoesters utilized as novel biodiesels were synthesized and structurally identified in the paper. Investigation was made on the effect of ether species on physicochemical properties of the palm oil ether monoesters. The results showed that density, kinematic viscosity, smoke point, and solidifying point increase linearly with their CH2 group number in certain relationships. Cetane number is enhanced whereas heat value decreases linearly with CH2 group number. In addition, the influencing regularities of volumetric content of the palm oil ether monoesters on the fuel properties were also studied when the ether monoesters are used as diesel fuel additives.

Keywords: biodiesel, palm oil ether monoester, ether species, physicochemical property

Procedia PDF Downloads 268
2229 Preparation and Characterization of Activated Carbon from Animal Bone

Authors: Getenet Aseged Zeleke

Abstract:

The aim of this project was to study the synthesis of activated carbon from low-cost animal beef and the characterization of the product obtained. The bone was carbonized in an inert atmosphere at three different temperatures (500°C, 700oC and 900°C) in an electric furnace, followed by activation with hydrochloric acid. The activated animal bone charcoals obtained were characterized by using scanning electron microscopy (SEM)to observe the effect of activation compared to the unactivated bone charcoal. The following parameters were also determined: ash content, moisture content, volatile content, fixed carbon, pH, pore volume and bulk (apparent) density. The characterization result showed that the activated bone charcoal has good properties and is compared favorably with other reference activated carbons.

Keywords: bones, carbonization, activation, characterization, activated carbon

Procedia PDF Downloads 88
2228 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 297
2227 Health Transformation Program and Effects on Health Expenditures

Authors: Zeynep Karacor, Rahime Hulya Ozturk

Abstract:

In recent years, the rise of population density and the problem of aging population took attention to the health expenditures. In Turkey, some regulations and infrastructure changes in health sector have occurred. These changes are called Health Transformation Program. The productivity of health services, patient satisfaction, quality of services are tried to be improved with this program. Some radical changes are applied in Turkish economy in this context. The aim of this paper is to present the effects of Health Transformation Program on health expenditures. In the first part of the paper, some information’s about health system and applications in Turkey are discussed. In the second part, the aims of Health Transformation Program are explained. And in the third part the effects of Health Transformation Program on health expenditures are examined.

Keywords: health transformation program, Turkey, health services, health expenditures

Procedia PDF Downloads 396
2226 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 58
2225 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 561
2224 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies

Authors: Adeiza Matthew, Oluwamishola Abubakar

Abstract:

In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.

Keywords: calorific, BTU, wood moisture content, density of wood

Procedia PDF Downloads 108
2223 A Model of the Universe without Expansion of Space

Authors: Jia-Chao Wang

Abstract:

A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.

Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction

Procedia PDF Downloads 135
2222 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore

Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas

Abstract:

Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.

Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception

Procedia PDF Downloads 156
2221 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors

Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia

Abstract:

In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.

Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions

Procedia PDF Downloads 189
2220 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 322