Search results for: rearing parameters optimization
9913 Investigation of Airship Motion Sensitivity to Geometric Parameters
Authors: Han Ding, Wang Xiaoliang, Duan Dengping
Abstract:
During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered.Keywords: airship, Lagrangian approach, turning circles, horizontal/vertical zigzag maneuvers
Procedia PDF Downloads 4259912 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 4029911 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock
Authors: Tumisang Seodigeng, Hilary Rutto
Abstract:
In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten
Procedia PDF Downloads 4979910 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.Keywords: cooler, EER, energy label, optimization
Procedia PDF Downloads 3449909 Analytic Hierarchy Process and Multi-Criteria Decision-Making Approach for Selecting the Most Effective Soil Erosion Zone in Gomati River Basin
Authors: Rajesh Chakraborty, Dibyendu Das, Rabindra Nath Barman, Uttam Kumar Mandal
Abstract:
In the present study, the objective is to find out the most effective zone causing soil erosion in the Gumati river basin located in the state of Tripura, a north eastern state of India using analytical hierarchy process (AHP) and multi-objective optimization on the basis of ratio analysis (MOORA).The watershed is segmented into 20 zones based on Area. The watershed is considered by pointing the maximum elevation from sea lever from Google earth. The soil erosion is determined using the universal soil loss equation. The different independent variables of soil loss equation bear different weightage for different soil zones. And therefore, to find the weightage factor for all the variables of soil loss equation like rainfall runoff erosivity index, soil erodibility factor etc, analytical hierarchy process (AHP) is used. And thereafter, multi-objective optimization on the basis of ratio analysis (MOORA) approach is used to select the most effective zone causing soil erosion. The MCDM technique concludes that the maximum soil erosion is occurring in the zone 14.Keywords: soil erosion, analytic hierarchy process (AHP), multi criteria decision making (MCDM), universal soil loss equation (USLE), multi-objective optimization on the basis of ratio analysis (MOORA)
Procedia PDF Downloads 5389908 Data Analytics in Energy Management
Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair
Abstract:
With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.Keywords: energy analytics, energy management, operational data, business intelligence, optimization
Procedia PDF Downloads 3649907 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2089906 Dynamic Response Analysis of Structure with Random Parameters
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters
Procedia PDF Downloads 1909905 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal
Abstract:
The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: automotive industry, FMEA, control plan, automotive technology
Procedia PDF Downloads 4069904 Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments
Authors: Adel El-Hadidy
Abstract:
For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects.Keywords: garment, sewing defects, cost of rework, DMAIC, sigma level, cause and effect diagram, Pareto analysis
Procedia PDF Downloads 1659903 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity
Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka
Abstract:
Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.Keywords: performance optimization, productivity, queuing theory, robotics
Procedia PDF Downloads 1549902 Effect of SPS Parameters on the Densification of ZrB2-Based Composites
Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh
Abstract:
Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness
Procedia PDF Downloads 4069901 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 1749900 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape
Authors: Man N. M. Cheung
Abstract:
In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness
Procedia PDF Downloads 1799899 CAD Tool for Parametric Design modification of Yacht Hull Surface Models
Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart
Abstract:
Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.Keywords: design parameter, design constraints, shape modifies, yacht hull
Procedia PDF Downloads 3019898 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 209897 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method
Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil
Abstract:
The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel
Procedia PDF Downloads 1319896 Early Outcomes and Lessons from the Implementation of a Geriatric Hip Fracture Protocol at a Level 1 Trauma Center
Authors: Peter Park, Alfonso Ayala, Douglas Saeks, Jordan Miller, Carmen Flores, Karen Nelson
Abstract:
Introduction Hip fractures account for more than 300,000 hospital admissions every year. Many present as fragility fractures in geriatric patients with multiple medical comorbidities. Standardized protocols for the multidisciplinary management of this patient population have been shown to improve patient outcomes. A hip fracture protocol was implemented at a Level I Trauma center with a focus on pre-operative medical optimization and early surgical care. This study evaluates the efficacy of that protocol, including the early transition period. Methods A retrospective review was performed of all patients ages 60 and older with isolated hip fractures who were managed surgically between 2020 and 2022. This included patients 1 year prior and 1 year following the implementation of a hip fracture protocol at a Level I Trauma center. Results 530 patients were identified: 249 patients were treated before, and 281 patients were treated after the protocol was instituted. There was no difference in mean age (p=0.35), gender (p=0.3), or Charlson Comorbidity Index (p=0.38) between the cohorts. Following the implementation of the protocol, there were observed increases in time to surgery (27.5h vs. 33.8h, p=0.01), hospital length of stay (6.3d vs. 9.7d, p<0.001), and ED LOS (5.1h vs. 6.2h, p<0.001). There were no differences in in-hospital mortality (2.01% pre vs. 3.20% post, p=0.39) and complication rates (25% pre vs 26% post, p=0.76). A trend towards improved outcomes was seen after the early transition period but failed to yield statistical significance. Conclusion Early medical management and surgical intervention are key determining factors affecting outcomes following fragility hip fractures. The implementation of a hip fracture protocol at this institution has not yet significantly affected these parameters. This could in part be due to the restrictions placed at this institution during the COVID-19 pandemic. Despite this, the time to OR pre-and post-implementation was quicker than figures reported elsewhere in literature. Further longitudinal data will be collected to determine the final influence of this protocol. Significance/Clinical Relevance Given the increasing number of elderly people and the high morbidity and mortality associated with hip fractures in this population finding cost effective ways to improve outcomes in the management of these injuries has the potential to have enormous positive impact for both patients and hospital systems.Keywords: hip fracture, geriatric, treatment algorithm, preoperative optimization
Procedia PDF Downloads 799895 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 1149894 Influence of Magnetic Bio-Stimulation Effects on Pre-Sown Hybrid Sunflower Seeds Germination, Growth, and on the Percentage of Antioxidant Activities
Authors: Nighat Zia-ud-Den, Shazia Anwer Bukhari
Abstract:
In the present study, sunflower seeds were exposed to magnetic bio-stimulation at different milli Tesla, and their effects were studied. The present study addressed to establish the effectiveness of magnetic bio-stimulation on seed germination, growth, and other dynamics of crop growth. The changes in physiological characters, i.e. the growth parameters of seedlings (biomass, root and shoot length, fresh and dry weight of root shoot leaf and fruit, leaf area, the height of plants, number of leaves, and number of fruits per plant) and antioxidant activities were measured. The parameters related to germination and growth were measured under controlled conditions while they changed significantly compared with that of the control. These changes suggested that magnetic seed stimulator enhanced the inner energy of seeds, which contributed to the acceleration of the growth and development of seedlings. Moreover, pretreatment with a magnetic field was found to be a positive impact on sunflower seeds germination, growth, and other biochemical parameters.Keywords: sunflower seeds, physical priming method, biochemical parameters, antioxidant activities
Procedia PDF Downloads 1659893 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS
Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan
Abstract:
Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.Keywords: bearing force, frictional force, finite element analysis, ANSYS
Procedia PDF Downloads 3349892 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1559891 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach
Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman
Abstract:
The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.Keywords: AA6061, density, DOE, hot extrusion, microhardness
Procedia PDF Downloads 3499890 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters
Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava
Abstract:
Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predictedKeywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)
Procedia PDF Downloads 6429889 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation
Authors: Somnath Karmakar, S. Chakraverty
Abstract:
This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam
Procedia PDF Downloads 1159888 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 2339887 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 1909886 Fragment Domination for Many-Objective Decision-Making Problems
Authors: Boris Djartov, Sanaz Mostaghim
Abstract:
This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization
Procedia PDF Downloads 919885 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 2849884 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant
Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar
Abstract:
This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration
Procedia PDF Downloads 82