Search results for: real-time spatial big data
25344 Discussion on the Impact and Improvement Strategy of Bike Sharing on Urban Space
Authors: Bingying Liu, Dandong Ge, Xinlan Zhang, Haoyang Liang
Abstract:
Over the past two years, a new generation of No-Pile Bike sharing, represented by the Ofo, Mobike and HelloBike, has sprung up in various cities in China, and spread rapidly in countries such as Britain, Japan, the United States and Singapore. As a new green public transportation mode, bike sharing can bring a series of benefits to urban space. At first, this paper analyzes the specific impact of bike sharing on urban space in China. Based on the market research and data analyzing, it is found that bike sharing can improve the quality of urban space in three aspects: expanding the radius of public transportation service, filling service blind spots, alleviating urban traffic congestion, and enhancing the vitality of urban space. On the other hand, due to the immature market and the imperfect system, bike sharing has gradually revealed some difficulties, such as parking chaos, malicious damage, safety problems, imbalance between supply and demand, and so on. Then the paper investigates the characteristics of shared bikes, business model, operating mechanism on Chinese market currently. Finally, in order to make bike sharing serve urban construction better, this paper puts forward some specific countermeasures from four aspects. In terms of market operations, it is necessary to establish a public-private partnership model and set up a unified bike-sharing integrated management platform. From technical methods level, the paper proposes to develop an intelligent parking system for regulating parking. From policy formulation level, establishing a bike-sharing assessment mechanism would strengthen supervision. As to urban planning, sharing data and redesigning slow roadway is beneficial for transportation and spatial planning.Keywords: bike sharing, impact analysis, improvement strategy, urban space
Procedia PDF Downloads 17425343 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria
Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah
Abstract:
Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria
Procedia PDF Downloads 7625342 Promises versus Realities: A Critical Assessment of the Integrated Design Process
Authors: Firdous Nizar, Carmela Cucuzzella
Abstract:
This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process
Procedia PDF Downloads 17925341 Association of Social Data as a Tool to Support Government Decision Making
Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias
Abstract:
Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.Keywords: social data, government decision making, association of social data, data mining
Procedia PDF Downloads 37425340 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 2525339 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform
Authors: Sadam Alwadi
Abstract:
Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.Keywords: outlier values, imputation, stock market data, detecting, estimation
Procedia PDF Downloads 8425338 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 43425337 Investigation of the Possible Correlation of Earthquakes with a Red Tide Occurrence in the Persian Gulf and Oman Sea
Authors: Hadis Hosseinzadehnaseri
Abstract:
The red tide is a kind of algae blooming, caused different problems at different sizes for the human life and the environment, so it has become one of the serious global concerns in the field of Oceanography in few recent decades. This phenomenon has affected on Iran's water, especially the Persian Gulf's since last few years. Collecting data associated with this phenomenon and comparison in different parts of the world is significant as a practical way to study this phenomenon and controlling it. Effective factors to occur this phenomenon lead to the increase of the required nutrients of the algae or provide a good environment for blooming. In this study, we examined the probability of relation between the earthquake and the harmful algae blooming in the Persian Gulf's water through comparing the earthquake data and the recorded Red tides. On the one hand, earthquakes can cause changes in seawater temperature that is effective in creating a suitable environment and the other hand, it increases the possibility of water nutrients, and its transportation in the seabed, so it can play a principal role in the development of red tide occurrence. Comparing the distribution spatial-temporal maps of the earthquakes and deadly red tides in the Persian Gulf and Oman Sea, confirms the hypothesis, why there is a meaningful relation between these two distributions. Comparing the number of earthquakes around the world as well as the number of the red tides in many parts of the world indicates the correlation between these two issues. This subject due to numerous earthquakes, especially in recent years and in the southern part of the country should be considered as a warning to the possibility of re-occurrence of a critical state of red tide in a large scale, why in the year 2008, the number of recorded earthquakes have been more than near years. In this year, the distribution value of the red tide phenomenon in the Persian Gulf got measured about 140,000 square kilometers and entire Oman Sea, with 10 months Survival in the area, which is considered as a record among the occurred algae blooming in the world. In this paper, we could obtain a logical and reasonable relation between the earthquake frequency and this phenomenon occurrence, through compilation of statistics relating to the earthquakes in the southern Iran, from 2000 to the end of the first half of 2013 and also collecting statistics on the occurrence of red tide in the region as well as examination of similar data in different parts of the world. As shown in Figure 1, according to a survey conducted on the earthquake data, the most earthquakes in the southern Iran ranks first in the fourth Gregorian calendar month In April, coincided with Ordibehesht and Khordad in Persian calendar and then in the tenth Gregorian calendar month In October, coincided in Aban and Azar in Persian calendar.Keywords: red tide, earth quake, persian gulf, harmful algae bloom
Procedia PDF Downloads 50425336 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage
Authors: P. Jayashree, S. Rajkumar
Abstract:
With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding
Procedia PDF Downloads 30125335 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 10525334 The Assessment of Forest Wood Biomass Potential in Terms of Sustainable Development
Authors: Julija Konstantinavičienė, Vlada Vitunskienė
Abstract:
The role of sustainable biomass, including wood biomass, is becoming more important because of European Green Deal. The New EU Forest strategy is a flagship element of the European Green Deal and a key action on the EU biodiversity strategy for 2030. The first measure of this strategy is promoting sustainable forest management, including encouraging the sustainable use of wood-based resources. The first aim of this research was to develop and present a new approach to the concept of forest wood biomass potential in terms of sustainable development, distinguishing theoretical, technical and sustainable potential and detailing its constraints. The second aim was to prepare the methodology outline of sustainable forest wood biomass potential assessment and empirically check this methodology, considering economic, social and ecological constraints. The basic methodologies of the research: the review of research (with a combination of semi-systematic and integrative review methodologies), rapid assessment method and statistical data analysis. The developed methodology of assessment of forest wood potential in terms of sustainable development can be used in Lithuania and in other countries and will let us compare this potential a different time and spatial levels. The application of the methodology will be able to serve the development of new national strategies for the wood sector.Keywords: assessment, constraints, forest wood biomass, methodology, potential, sustainability
Procedia PDF Downloads 12725333 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 2025332 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data
Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif
Abstract:
Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.Keywords: field data, local scour, scour equation, wide piers
Procedia PDF Downloads 41825331 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol
Authors: Inkyu Kim, SangMan Moon
Abstract:
This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application
Procedia PDF Downloads 39825330 Analysis of Street Utilization Patterns in Makurdi, Benue State, Nigeria
Authors: I. D. Mngutyo, T. T. Gyuse, D. S. A. Alaci, J. Atser
Abstract:
Streets are public spaces that are meaningful to all people because of lack of restriction on streets. Studies show that conditions, activities and people contribute to the success of public spaces. Also, self-organization potential in activity patterns offers a prospect for the revitalization of an urban area. This potential is mostly ignored hence many African streets appear disorganized giving African urban areas an unplanned look. Therefore, this study aims to analyze street utilization patterns and explore the relationship between the pattern of street use and condition of streets in Makurdi.These activity patterns form a data base for the revitalization of public space. Three major and minor arterials streets in nine out of the eleven wards that make up the built up part of Makurdi were purposively selected as units for measurement. A street activity audit was done on streets for activities that can be observed. For activities that cannot be easily observed 4 questionnaires were randomly administered on each of the three streets giving a total of 108 questionnaires. Multivariate statistical tools such as factor analysis and regression will be used to show emerging streets activity patterns and spatial variation among the nine wards.Keywords: streets, utilization patterns, revitalization, urban design, urban, areas, developing countries
Procedia PDF Downloads 44625329 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 55525328 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 81825327 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots
Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra
Abstract:
Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation
Procedia PDF Downloads 19325326 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26725325 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 13725324 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 53925323 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 36725322 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 35625321 Anticipating the Change: Visions and Perspectives towards a Post-Car World
Authors: Farzaneh Bahrami
Abstract:
Different indicators, such as modal shares in mobility practices or car ownership, may suggest that the century of car dominance - at least in Europe and North America - is already behind us. If the emergence of the car had radical spatial and social consequences, what would be the implications of its gradual disappearance - which could be expected in the context of ecological consciousness, economic and energetic constraints as a result of both urban policies as well as lifestyle choices? To what extend shall urban experts account for this limited but visible transition from car-dominated systems towards alternative models of mobility in which the individual-motorized mobility (car) is not central; what models of urbanity could be imagined to support such a transformation? We have examined a selection of projects at different scales and within different contexts - new planned cities, dense urban areas or territories of dispersion – whose visions involve a significant shift from the current car system. We have been looking into their tools, strategies and different measures of car reduction, as well as their varied approaches to public space as an inevitable corollary to this change. The car’s dominance was formerly questioned by advocates of public space, rather than through interests in ecological urban design or other urban planning concerns. In the 60s already a universal longing for the qualities of traditional urban space led to a critique of the proliferation of fast roads, and thus the car’s colonization of everyday life. Reclamation of public space as the city’s quintessential social territory reappears today in contemporary discourses and reinforces the shift-provoking trends towards a new urbanity freed from car dominance. In a hypothetical process of the progressive phasing-out of the car, we shall expect fundamental transformations in spatial practices of the city, accompanied by the physical configuration of its public spaces. What will be the main characteristics of the new emerging spaces of sociability and where shall we encounter them? This contribution is an ongoing research within the framework of Post-Car World, an interdisciplinary project that explores the future of mobility through the role of the car.Keywords: mobility, urbanity, future visions, public space
Procedia PDF Downloads 37325320 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 17225319 Spatial Orientation of Land Use Activities along Buffalo River Estuary: A Study in Buffalo City Metropolitan Municipality, Eastern Cape South Africa
Authors: A. Ngunga, M. K. Soviti, S. Nakin
Abstract:
South Africa is one of the developing countries rich in estuary ecosystem. Previous studies have identified many impacts of land use activities on the pollution status of the estuaries. These land use activity and related practices are often blamed for the many pollution problems affecting the estuaries. For example, the estuarine ecosystems on a global scale are experiencing vast transformations from anthropogenic influences; Buffalo River Estuary is one of the influenced estuaries whereby the sources of pollution are unknown. These problems consequently lead to the degradation of the estuaries. The aim of the research was to establish the factors that have the potential to impact pollution status of Buffalo river estuary. Study focuses on Identifying and mapping land use activities along Buffalo River Estuary. Questionnaire survey, structured interviews, direct observation, GPS survey and ArcGIS mapping were the methods used for data collection in the area, and results were analyzed and presented by ANOVA and Microsoft Excel statistical methods. The results showed that harbour is the main source of pollution, in Buffalo River Estuary, through Ballast water discharge. Therefore that requires more concern for protecting and cleaning the estuary.Keywords: estuary, land-use activities, pollution, mapping, water pollution
Procedia PDF Downloads 19625318 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 10425317 Analysis of the Evolution of Landscape Spatial Patterns in Banan District, Chongqing, China
Authors: Wenyang Wan
Abstract:
The study of urban land use and landscape pattern is the current hotspot in the fields of planning and design, ecology, etc., which is of great significance for the construction of the overall humanistic ecosystem of the city and optimization of the urban spatial structure. Banan District, as the main part of the eastern eco-city planning of Chongqing Municipality, is a high ground for highlighting the ecological characteristics of Chongqing, realizing effective transformation of ecological value, and promoting the integrated development of urban and rural areas. The analytical methods of land use transfer matrix (GIS) and landscape pattern index (Fragstats) were used to study the characteristics and laws of the evolution of land use landscape pattern in Banan District from 2000 to 2020, which provide some reference value for Banan District to alleviate the ecological contradiction of landscape. The results of the study show that ① Banan District is rich in land use types, of which the area of cultivated land will still account for 57.15% of the total area of the landscape until 2020, accounting for an absolute advantage in land use structure of Banan District; ② From 2000 to 2020, land use conversion in Banan District is characterized as Cropland > woodland > grassland > shrubland > built-up land > water bodies > wetlands, with cropland converted to built-up land being the largest; ③ From 2000 to 2020, the landscape elements of Banan District were distributed in a balanced way, and the landscape types were rich and diversified, but due to the influence of human interference, it also presented the characteristics that the shape of the landscape elements tended to be irregular, and the dominant patches were distributed in a scattered manner, and the patches had poor connectivity. It is recommended that in future regional ecological construction, the layout should be rationally optimized, the relationship between landscape components should be coordinated, the connectivity between landscape patches should be strengthened, and the degree of landscape fragmentation should be reduced.Keywords: land use transfer, landscape pattern evolution, GIS and Fragstats, Banan district
Procedia PDF Downloads 7725316 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 8925315 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data
Procedia PDF Downloads 415