Search results for: random search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3878

Search results for: random search

2528 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning

Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana

Abstract:

Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.

Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning

Procedia PDF Downloads 35
2527 Innovation Trends in Latin America Countries

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

This paper analyses innovation trends in Latin America countries by means of the number of patent applications filed by residents and non-residents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in Argentina, Brazil Chile, and Mexico. These changes may suggest that firms’ innovative activity has been modified as a result of implementing a particular science, technology and innovation (STI) policy. Accordingly, the new regulations implemented in these countries during 1980s and 1990s have influenced their intellectual property regimes. The question conducting this research is thus how STI policies in these countries have affected their innovation activity? The results achieved in this research confirm the existence of multiple structural changes in the series of patent applications resulting from STI policies implemented in these countries.

Keywords: econometric methods, innovation activity, Latin America countries, patents, science, technology and innovation policy

Procedia PDF Downloads 282
2526 Abraham Ibn Ezra on the Torah’s Authorship

Authors: Eran Viezel

Abstract:

Critical biblical scholarship emerged in the early modern period, yet scholars frequently search for precursors to it among medieval commentators who adopted critical positions—and many mention Abraham Ibn Ezra (Spain–England, 1089–1164/7) in this context. Indeed, in several places, Ibn Ezra claims that there are verses in the Torah that were added to it after the time of Moses; and some major thinkers and scholars in the early modern period (for example, Baruch Spinoza) were aware of these remarks and influenced by them. However, Ibn Ezra’s belief that the Torah includes verses added at a later time is not based on the considerations that led the founders of critical biblical scholarship to their conclusion that Moses did not write the Torah. Ibn Ezra’s positions on the question of the Torah’s authorship are an example of the fact that similarity in conclusions and even in interpretive methodology should not obscure the different interpretive and attitudinal points of departure that distinguish traditional biblical interpretation from a critical biblical scholarship. Ultimately, a chasm exists between the views of Ibn Ezra and those of critical thinkers such as Spinoza.

Keywords: hebrew bible, Abraham Ibn Ezra, exegesis, biblical scholarship

Procedia PDF Downloads 120
2525 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 72
2524 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 159
2523 Heritage Value and Industrial Tourism Potential of the Urals, Russia

Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov

Abstract:

Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.

Keywords: industrial heritage, mining heritage, Central Urals, Russia

Procedia PDF Downloads 135
2522 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 165
2521 The Language Use of Middle Eastern Freedom Activists' Speeches: A Gender Perspective

Authors: Sulistyaningtyas

Abstract:

Examining the role of Middle Eastern freedom activists’ speech based on gender perspective is considered noteworthy because the society in the Middle East is patriarchal. This research aims to examine the language use of the Middle Eastern freedom activists’ speeches through gender perspective. The data sources are from male and female Middle Eastern freedom activists’ speech videos. In analyzing the data, the theories employed are about Language Style from Gender Perspective and The Language for Speech. The result reveals that there are sets of spoken language differences between male and female speakers. In using the language for speech, both male and female speakers produce metaphor, euphemism, the ‘rule of three’, parallelism, and pronouns in random frequency of production, which cannot be separated by genders. Moreover, it cannot be concluded that one gender is more potential than the other to influence the audience in delivering speech. There are other factors, particularly non-verbal factors, existing to give impacts on how a speech can influence the audience.

Keywords: gender perspective, language use, Middle Eastern freedom activists, speech

Procedia PDF Downloads 418
2520 Use of Fine Marble in Concrete Based On Sand Dune

Authors: M. Belachia, R. Djebien

Abstract:

In the development that our country has in all areas and especially in the field of Building and Construction, the development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Enhancement of crushed sand and sand dunes and reuse of waste as additions in concrete can help to overcome the deficit in aggregates. This work focuses on the development of concrete made from sand, knowing that our country has huge potential in sand dune. This study is complemented by a review of the possibility of using certain recycled wastes in concrete sand, including the effect of fines (marble powders) on the rheological and mechanical properties of concrete and sand to the outcome optimal formulation. After the characterization phase of basic materials, we proceeded to carry out the experimental program was to search the optimum characteristics by adding different percentages of fines. The aim is to show that the possibility of using local materials (sand dune) for the manufacture of concrete and reuse of waste (marble powders) in the implementation of concrete.

Keywords: sand dune, mechanical properties, rheological properties, fine marble

Procedia PDF Downloads 465
2519 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal

Authors: Maharjan Shree Kumar

Abstract:

Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.

Keywords: adaptation, agriculture, climate, factors, Nepal

Procedia PDF Downloads 151
2518 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 181
2517 Modeling Influence on Petty Corruption Attitudes

Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic

Abstract:

Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.

Keywords: agent-based model, attitude, influence, petty corruption, society

Procedia PDF Downloads 199
2516 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 59
2515 Customer Expectation on Service Quality in Bed and Breakfast Establishments in Johannesburg Metropolitan

Authors: Chiedza Lebogang Gutu, Nester Rufaro Manuwa, Jean-Marie Mbuya

Abstract:

In Johannesburg, Metropolitan customer expectations in the hospitality industry have rapidly been increasing which has lead to the need of improving service quality to help satisfy customer expectations. Businesses need to make sure that customer expectations are met, or find ways to control customer expectations. Therefore the purpose of the study is to investigate how customer expectations of services in bed and breakfast establishments affect the perceived quality of service. A quantitative approach was used through random sampling to collect descriptive and correlation study between customer expectations and perceived quality. Findings of the study indicated that customers at bed and breakfast generally expect a clean, friendly and safe environment that has a homely feel, while they are away from home. In addition, findings of the study also emphasised that the age-groups between 20 and 35 are more likely to travel, for business and vacation purposes, staying for more or less 3, have high expectations towards modern facilities and extras in the room such as coffee machines, and are more concerned about the service being provided quickly and right, and taking extra care to deal with problems promptly.

Keywords: Customer satisfaction, Service quality, Bed and breakfast, Customer retention

Procedia PDF Downloads 385
2514 The Influence of Social Media on the Body Image of First Year Female Medical Students of University of Khartoum, 2022

Authors: Razan Farah, Siham Ballah

Abstract:

Facebook, Instagram, TikTok and other social media applications have become an integral component of everyone’s social life, particularly among younger generations and adolescences. These social apps have been changing a lot of conceptions and believes in the population by representing public figures and celebrities as role models. The social comparison theory, which says that people self-evaluate based on comparisons with similar others, is commonly used to explore the impact of social media on body image. There is a need to study the influence of those social platforms on the body image as there have been an increase in body dissatisfaction in the recent years. This cross sectional study used a self administered questionnaire on a simple random sample of 133 female medical students of the first year. Finding shows that the response rate was 75%. There was an association between social media usage and noticing how the person look(p value = .022), but no significant association between social media use and body image influence or dissatisfaction was found. This study implies more research under this topic in Sudan as the literature are scarce.

Keywords: body image, body dissatisfaction, social media, adolescences

Procedia PDF Downloads 70
2513 The Audience’s Satisfaction through Radio Channel Broadcasting of Suan Sunandha Rajabhat University

Authors: Piyakarn Apichaikul, Thep Muanfoo

Abstract:

This research study aimed to survey the audience’s satisfaction of the radio channel broadcasting of Suan Sunandha Rajabhat University and to investigate the relationship between the satisfaction and the usage of the listeners to the news program. The study was a quantitative research using a survey research method and a cross-sectional description study to examine the satisfaction and the usage of the listeners. The instrument of the research was questionnaires which were delivered to 300 respondents by simple random sampling. For the analytical part, descriptive statistics and inferential statistic were used in this research. The result found that respondents agreed that they were satisfied with the news program (mean = 3.60). Moreover, respondents agreed that they used information from the news program in their daily life (mean = 3.47). However, the relationship between the satisfaction and the usage of the respondents were contrary.

Keywords: news program, radio channel broadcasting, Suan Sunandha Rajabhat University, audience satisfaction

Procedia PDF Downloads 246
2512 User Guidance for Effective Query Interpretation in Natural Language Interfaces to Ontologies

Authors: Aliyu Isah Agaie, Masrah Azrifah Azmi Murad, Nurfadhlina Mohd Sharef, Aida Mustapha

Abstract:

Natural Language Interfaces typically support a restricted language and also have scopes and limitations that naïve users are unaware of, resulting in errors when the users attempt to retrieve information from ontologies. To overcome this challenge, an auto-suggest feature is introduced into the querying process where users are guided through the querying process using interactive query construction system. Guiding users to formulate their queries, while providing them with an unconstrained (or almost unconstrained) way to query the ontology results in better interpretation of the query and ultimately lead to an effective search. The approach described in this paper is unobtrusive and subtly guides the users, so that they have a choice of either selecting from the suggestion list or typing in full. The user is not coerced into accepting system suggestions and can express himself using fragments or full sentences.

Keywords: auto-suggest, expressiveness, habitability, natural language interface, query interpretation, user guidance

Procedia PDF Downloads 472
2511 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 452
2510 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 291
2509 Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times

Authors: Majid Khalili

Abstract:

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms.

Keywords: no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness

Procedia PDF Downloads 416
2508 UPPAAL-based Design and Analysis of Intelligent Parking System

Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif

Abstract:

The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.

Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal

Procedia PDF Downloads 145
2507 Relationship with Immediate Superior, Leadership, and Career Success of Managers

Authors: L. N. A. Chandana Jayawardena, Ales Gregar

Abstract:

Occupational Self Efficacy (OSE) reflects the conviction of a person’s ability to fulfill his job related behavior at a perfectly acceptable level to the employer. Transformational leadership improves followers’ commitment by influencing their needs, values, and self-esteem. Employees also develop a dyadic relationship with their immediate superiors. Study was conducted amongst one hundred and twenty two (122) bank managers in Sri Lanka. They were selected based on multi-stage (seniority in the hierarchy, gender, department-wise etc.) stratified random sampling. Major objectives of this study were to analyze the impact of transformational leadership style, and OSE along with socio-demographic factors, and career, job and organizational experience, to the career satisfaction of managers. SPSS software was used for parametric and non-parametric statistical analyses. Career satisfaction had positive impacts on their transformational leadership style, and their relationships with the immediate superior. Impact of socio-demographic factors, and career exposure to career satisfaction was assessed.

Keywords: career success, relationship with immediate superior, transformational leadership, occupational self efficacy (OSE)

Procedia PDF Downloads 328
2506 Optimization of Process Parameters for Peroxidase Production by Ensifer Species

Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh

Abstract:

Given the high utility of peroxidase in several industrial processes, the search for novel microorganisms with enhanced peroxidase production capacity is of keen interest. This study investigated the process conditions for optimum peroxidase production by Ensifer sp, new ligninolytic proteobacteria with peroxidase production potential. Also, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimum at an initial medium pH 7, incubation temperature of 30 °C and agitation speed of 100 rpm using alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer sp. was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg⁻¹. Interestingly, probable laccase production was observed with optimum specific productivity of 12.76 ± 0.45 U mg⁻¹ at 72 h. The highest peroxidase yield was observed with sawdust as solid substrate under solid state fermentation. In conclusion, Ensifer sp. possesses the capacity for enhanced peroxidase production that can be exploited for various biotechnological applications.

Keywords: catalase-peroxidase, enzyme production, peroxidase, polymerase chain reaction, proteobacteria

Procedia PDF Downloads 305
2505 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.

Keywords: e-commerce, online retail, Retail business, trust, website

Procedia PDF Downloads 192
2504 A Meta-Analysis of Handwriting and Visual-Motor Integration (VMI): The Moderating Effect of Handwriting Dimensions

Authors: Hong Lu, Xin Chen, Zhengcheng Fan

Abstract:

Prior research has claimed a close association between handwriting and mathematics attainment with the help of spatial cognition. However, the exact mechanism behind this relationship remains un-investigated. Focusing on visual-motor integration (VMI), one critical spatial skill, this meta-analysis aims to estimate the size of the handwriting- visual-motor integration relationship and examine the moderating effect of handwriting dimensions on the link. With a random effect model, a medium relation (r=.26, 95%CI [.22, .30]) between handwriting and VMI was summarized in 38 studies with 55 unique samples and 141 effect sizes. Findings suggested handwriting dimensions significantly moderated the handwriting- VMI relationship, with handwriting legibility showing a substantial correlation with VMI, but neither handwriting speed nor pressure. Identifying the essential relationship between handwriting legibility and VMI, this study adds to the literature about the key cognitive processing needs underlying handwriting, and spatial cognition thus highlights the cognitive mechanism regarding handwriting, spatial cognition, and mathematics performances.

Keywords: handwriting, visual-motor integration, legibility, meta-analysis

Procedia PDF Downloads 105
2503 Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics

Authors: Su Mon Saw, Joe Rothnagel

Abstract:

Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics.

Keywords: bioinformatics, HEK293 cells, liquid chromatography-mass spectrometry, ProteinPilot, Strong Cation Exchange Chromatography, SDS-PAGE, sPEPs

Procedia PDF Downloads 186
2502 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 78
2501 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 129
2500 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms

Authors: Abdelghani Alidra, Mohamed Tahar Kimour

Abstract:

Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.

Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture

Procedia PDF Downloads 282
2499 Language Developmental Trends of Mandarin-Speaking Preschoolers in Beijing

Authors: Nga Yui Tong

Abstract:

Mandarin, the official language of China, is based on the Beijing dialect and is spoken by more than one billion people from all over the world. To investigate the trends of Mandarin acquisition, 192 preschoolers are recruited by stratified random sampling. They are from 4 different districts in Beijing, 2 schools in each district, with 4 age groups, both genders, and 3 children in each stratum. The children are paired up to conduct semi-structured free play for 30 minutes. Their language output is videotaped, transcribed, and coded for the calculation of Mean Length of Utterance (MLU). Two-way ANOVA showed that the variation of MLU is significantly contributed by age, which is coherent to previous findings of other languages. This first large-scale study to investigate the developmental trend of Mandarin in young children in Beijing provides empirical evidence to the development of standards and curriculum planning for early Mandarin education. Interestingly, the gender effect in the study is insignificant, with boys showing a slightly higher MLU than girls across all age groups and settings, except the 4.5 years same-gender dyads. The societal factors in the Chinese context on parenting and gender bias are worth looking into.

Keywords: Beijing, language development, Mandarin, preschoolers

Procedia PDF Downloads 117