Search results for: open data
25752 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data
Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee
Abstract:
Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.Keywords: data mining, evaluating new technology, technology opportunity, patent analysis
Procedia PDF Downloads 37725751 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs
Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox
Procedia PDF Downloads 37725750 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 9425749 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry
Authors: Qianhui Li, Christoph H. Bruecker
Abstract:
Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry
Procedia PDF Downloads 17425748 HIV Disclosure Status and Factors among Women to Their Sexual Partner in Victory plus, Yogyakarta, Indonesia
Authors: Dwi Kartika Rukmi, Miftafu Darussalam
Abstract:
Background: The disclosure of women’s HIV status toward their sexual partners is an important issue that should be regarded as one of the efforts to prevent and control the spread of HIV. Research on the disclosure of seropositive HIV status as well as women-related factors in Indonesia, especially Yogyakarta is only a few. Methods: This is a correlational descriptive research along with its cross-sectional approach on 329 women with HIV/AIDS at the Victory Plus NGO from June to July 2016. This research used a purposive sampling method and a questionnaire as the data collection technique. The bivariate analysis test was undertaken by using a chi-square and multivariate test along with a logistic regression. Result: The multivariate analysis and logistic regression show five independent variables related to the disclosure of seropositive HIV status of women with HIV/AIDS toward their sexual partners, namely ethnicity (aOR = 36,859; 95% CI; (6,544-207,616)) religion (aOR =0,255; 95%CI; (0,075-0,868)), discussion with partners prior to the HIV test (aOR =0,069; 95%CI; (0,065-0,438)) , types of sexual partners (aOR = 0.191; 95% CI; (0.082-0,445)) and knowledge on the partners’ HIV status (aOR = 0.036; 95% CI; (0.008-0.160)). The highest level of reason for seropositive HIV women not to be open about their partners’ status is the fear of being rejected by their partners and the environmental stigma of HIV AIDS disease. Conclusion: The disclosure of seropositive HIV status in women with HIV/AIDS in the Victory Plus NGO of Yogyakarta was 79.4% or classified as a high category with some related factors such as ethnicity, religion, discussion with partners prior to the HIV test, types of partners and knowledge on the partners’ HIV status.Keywords: women, HIV, disclosure, sexual partner
Procedia PDF Downloads 26125747 Multicenter Baseline Survey to Outline Antimicrobial Prescribing Practices at Six Public Sectortertiary Care Hospitals in a Low Middle Income Country
Authors: N. Khursheed, M. Fatima, S. Jamal, A. Raza, S. Rattani, Q. Ahsan, A. Rasheed, M. Jawed
Abstract:
Introduction: Antibiotics are among the commonly prescribed medicines to treat bacterial infections. Their misuse intensifies resistance, and overuse incurs heavy losses to the healthcare system in terms of increased treatment costs and enhanced disease burden. Studies show that 40% of empirically used antibiotics are irrationally utilized. The objective of this study was to evaluate prescribing pattern of antibiotics at six public sector tertiary care hospitals across Pakistan. Methods: A multicenter cross-sectional point prevalence survey (PPS) was conducted in selected wards of six public sector tertiary care hospitals in Pakistan as part of the Clinical Engagement program by Fleming Fund Country Grant Pakistan in collaboration with Indus Hospital & Health Network (IHHN) from February to March 2021, these included Jinnah Postgraduate Medical Center and Dr. Ruth K. M. Pfau Civil Hospital from Karachi, Sheikh Zayed Hospital Lahore, Nishtar Medical University Hospital Multan, Medical Teaching Institute Hayatabad Medical Complex Peshawar, and Provincial Headquarters Hospital Gilgit. WHO PPS methodology was used for data collection (Hospital, ward, and patient level data was collected). Data was entered into the open-source Kobo Collect application and was analyzed using SPSS (version 22.0). Findings: Medical records of 837 in-patients were surveyed, of which the prevalence of antibiotics use was 78.5%. The most commonly prescribed antimicrobial was Ceftriaxone (21.7%) which is categorized in the Watch group of WHO AWaRe Classification, followed by Metronidazole (17.3%), Cefoperazone/Sulbactam (8.4%), Co-Amoxiclav (6.3%) and Piperacillin/Tazobactam (5.9%). The antibiotics were prescribed largely for surgical prophylaxis (36.7%), followed by community-acquired infections (24.7%). One antibiotic was prescribed to 46.7%, two to 39.9%, and three or more to 12.5 %. Two of six (30%) hospitals had functional drug and therapeutic committees, three (50%) had infection prevention and control committees, and one facility had an antibiotic formulary. Conclusion: Findings demonstrate high consumption of broad-spectrum antimicrobials and emphasizes the importance of expanding the antimicrobial stewardship program. Mentoring clinical teams will help to rationalize antimicrobial use.Keywords: antimicrobial resistance, antimicrobial stewardship, point prevalence survey, antibiotics
Procedia PDF Downloads 10425746 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Authors: K. Chethana, A. S. Guru Prasad, H. N. Vikranth, H. Varun, S. N. Omkar, S. Asokan
Abstract:
This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.Keywords: biomechanics, fiber bragg gratings, plantar strain measurement, postural stability analysis
Procedia PDF Downloads 57225745 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 37225744 Feasibility of Using Musical Intervention to Promote Growth in Preterm Infants in the Neonatal Intensive Care Unit (NICU)
Authors: Yutong An
Abstract:
Premature babies in the Neonatal Intensive Care Unit (NICU) are usually protected in individual incubators to ensure a constant temperature and humidity. Accompanied by 24-hour monitoring by medical equipment, this provides a considerable degree of protection for the growth of preterm babies. However, preterm babies are still continuously exposed to noise at excessively high decibels (>45dB). Such noise has a highly damaging effect on the growth and development of preterm babies. For example, in the short term, it can lead to sleep deprivation, stress reactions, and difficulty calming emotions, while in the long term, it can trigger endocrine disorders, metabolic disorders, and hearing impairment. Fortunately, musical interventions in the NICU have been shown to provide calmness to newborns. This article integrates existing research on three types of music that are beneficial for preterm infants and their respective advantages and disadvantages. This paper aims to present a possibility, based on existing NICU equipment and experimental data related to musical interventions, to reduce the impact of noise on preterm babies in the NICU through a system design approach that incorporates a personalized adjustable music system in the incubator and an overall music enhancement in the open bay of the NICU.Keywords: music interventions, neonatal intensive care unit (NICU), premature babies, neonatal nursing
Procedia PDF Downloads 6425743 The Impact of Financial Reporting on Sustainability
Authors: Lynn Ruggieri
Abstract:
The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.Keywords: financial reporting, non-financial data, sustainability, global financial reporting
Procedia PDF Downloads 17825742 The Use of Creativity to Nudge Students Into Heutagogy: An Implementation in Graduate Business Education
Authors: Ricardo Bragança, Tom Vinaimont
Abstract:
This paper discusses the introduction of processes of self-determined learning (heutagogy) into a graduate course on financial modeling, using elements of entangled pedagogy and Biggs’ constructive alignment. To encourage learners to take control of their own learning journey and develop critical thinking and problem-solving skills, each session in the course receives tailor-made media-enhanced pedagogical assets. The design of those assets specifically supports entangled pedagogy, which opposes technological or pedagogical determinism in support of the collaborative integration of pedagogy and technology. Media assets for each of the ten sessions in this course consist of three components. The first component in this three-pronged approach is a game-cut-like cinematographic representation that introduces the context of the session. The second component represents a character from an open-source-styled community that encourages self-determined learning. The third component consists of a character, which refers to the in-person instructor and also aligns learning outcomes and assessment tasks, using Biggs’ constructive alignment, to the cinematographic and open-source-styled component. In essence, the course's metamorphosis helps students apply the concepts they've studied to actual financial modeling issues. The audio-visual media assets create a storyline throughout the course based on gamified and real-world applications, thus encouraging student engagement and interaction. The structured entanglement of pedagogy and technology also guides the instructor in the design of the in-class interactions and directs the focus on outcomes and assessments. The transformation process of this graduate course in financial modeling led to an institutional teaching award in 2021. The transformation of this course may be used as a model for other courses and programs in many disciplines to help with intended learning outcomes integration, constructive alignment, and Assurance of Learning.Keywords: innovative education, active learning, entangled pedagogy, heutagogy, constructive alignment, project based learning, financial modeling, graduate business education
Procedia PDF Downloads 7225741 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 9325740 Urban Household Waste Disposal Modes and Their Determinants: Evidence from Bure Town, North-Western Ethiopia
Authors: Mastawal Melese, Yismaw Assefa
Abstract:
This study aims to identify household-level determinants of solid waste disposal (SWD) practices in Bure Town, north-western Ethiopia. Using a cross-sectional design and a mixed-methods approach, data were collected from 238 randomly selected households through structured interviews, focus group discussions, and field observations. Descriptive analysis revealed that 14.7% of households used composting as a primary SWD method, 37.4% practiced open dumping, 25.6% used burning, and 22.3% resorted to burial. Multinomial logistic regression showed that factors such as monthly income, age, family size, length of residence, sex, home ownership, solid waste sorting procedures, and education significantly influenced the choice of disposal method. Households with lower education, income, home ownership, and shorter residence times were more likely to use improper disposal methods. Females were found to be more likely to engage in better waste disposal practices than males. These findings underscore the need for context-specific interventions in newly developing towns to enhance household-level SWM systems by addressing key socio-economic factors.Keywords: multinomial logistic regression, solid waste management, solid waste disposal, urban household
Procedia PDF Downloads 2225739 Using Teachers' Perceptions of Science Outreach Activities to Design an 'Optimum' Model of Science Outreach
Authors: Victoria Brennan, Andrea Mallaburn, Linda Seton
Abstract:
Science outreach programmes connect school pupils with external agencies to provide activities and experiences that enhance their exposure to science. It can be argued that these programmes not only aim to support teachers with curriculum engagement and promote scientific literacy but also provide pivotal opportunities to spark scientific interest in students. In turn, a further objective of these programmes is to increase awareness of career opportunities within this field. Although outreach work is also often described as a fun and satisfying venture, a plethora of researchers express caution to how successful the processes are to increases engagement post-16 in science. When researching the impact of outreach programmes, it is often student feedback regarding the activities or enrolment numbers to particular science courses post-16, which are generated and analysed. Although this is informative, the longevity of the programme’s impact could be better informed by the teacher’s perceptions; the evidence of which is far more limited in the literature. In addition, there are strong suggestions that teachers can have an indirect impact on a student’s own self-concept. These themes shape the focus and importance of this ongoing research project as it presents the rationale that teachers are under-used resources when it comes to considering the design of science outreach programmes. Therefore, the end result of the research will consist of a presentation of an ‘optimum’ model of outreach. The result of which should be of interest to the wider stakeholders such as universities or private or government organisations who design science outreach programmes in the hope to recruit future scientists. During phase one, questionnaires (n=52) and interviews (n=8) have generated both quantitative and qualitative data. These have been analysed using the Wilcoxon non-parametric test to compare teachers’ perceptions of science outreach interventions and thematic analysis for open-ended questions. Both of these research activities provide an opportunity for a cross-section of teacher opinions of science outreach to be obtained across all educational levels. Therefore, an early draft of the ‘optimum’ model of science outreach delivery was generated using both the wealth of literature and primary data. This final (ongoing) phase aims to refine this model using teacher focus groups to provide constructive feedback about the proposed model. The analysis uses principles of modified Grounded Theory to ensure that focus group data is used to further strengthen the model. Therefore, this research uses a pragmatist approach as it aims to focus on the strengths of the different paradigms encountered to ensure the data collected will provide the most suitable information to create an improved model of sustainable outreach. The results discussed will focus on this ‘optimum’ model and teachers’ perceptions of benefits and drawbacks when it comes to engaging with science outreach work. Although the model is still a ‘work in progress’, it provides both insight into how teachers feel outreach delivery can be a sustainable intervention tool within the classroom and what providers of such programmes should consider when designing science outreach activities.Keywords: educational partnerships, science education, science outreach, teachers
Procedia PDF Downloads 12925738 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 19425737 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants
Authors: N. C. Shahi, Anupama Singh, E. Kate
Abstract:
Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying
Procedia PDF Downloads 31325736 Evaluation of Complications Observed in Porcelain Fused to Metal Crowns Placed at a Teaching Institution
Authors: Shizrah Jamal, Robia Ghafoor, Farhan Raza
Abstract:
Porcelain fused to metal crown is the most versatile variety of crown that is commonly placed worldwide. Various complications have been reported in the PFM crowns with use over the period of time. These include chipping of the porcelain, recurrent caries, loss of retention, open contacts, and tooth fracture. The objective of the present study was to determine the frequency of these complications in crowns cemented over a period of five years in a tertiary care hospital and also to report the survival of these crowns. A retrospective study was conducted in Dental clinics, Aga Khan University Hospital in which 150 PFM crowns cemented over a period of five years were evaluated. Patient demographics, oral hygiene habits, para-functional habits, crown insertion and follow-up dates were recorded in a specially designed proforma. All PFM crowns fulfilling the inclusion criteria were assessed both clinically and radiographically for the presence of any complication. SPSS version 22.0 was used for statistical analysis. Frequency distribution and proportion of complications were determined. Chi-square test was used to determine the association of complications of PFM crowns with multiple variables including tooth wear, opposing dentition and betel nut chewing. Kaplan- meier survival analysis was used to determine the survival of PFM crowns over the period of five years. Level of significance was kept at 0.05. A total of 107 patients, with a mean age of 43.51 + 12.4 years, having 150 PFM crowns were evaluated. The most common complication observed was open proximal contacts (8.7%) followed by porcelain chipping (6%), decementation (5.3%), and abutment fracture (1.3%). Chi square test showed that there was no statistically significant association of PFM crown complication with tooth wear, betel nut and opposing dentition (p-value <0.05). The overall success and survival rates of PFM crowns turned out to be 78.7 and 84.7% respectively. Within the limitations of the study, it can be concluded that PFM crowns are an effective treatment modality with high success and survival rates. Since it was a single centered study; the results should be generalized with caution.Keywords: chipping, complication, crown, survival rate
Procedia PDF Downloads 20825735 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues
Authors: Muhammad Muhammad Suleiman
Abstract:
Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.Keywords: cloud computing, steganography, information hiding, cloud storage, security
Procedia PDF Downloads 19225734 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations
Authors: Carlos F. Sanz-Navarro, Sonia Fereres
Abstract:
Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility
Procedia PDF Downloads 32625733 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 42725732 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining
Authors: İbrahi̇m Kara, Seher Arslankaya
Abstract:
Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.Keywords: data mining, decision support systems, heart attack, health sector
Procedia PDF Downloads 35625731 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 11825730 Strategic Citizen Participation in Applied Planning Investigations: How Planners Use Etic and Emic Community Input Perspectives to Fill-in the Gaps in Their Analysis
Authors: John Gaber
Abstract:
Planners regularly use citizen input as empirical data to help them better understand community issues they know very little about. This type of community data is based on the lived experiences of local residents and is known as "emic" data. What is becoming more common practice for planners is their use of data from local experts and stakeholders (known as "etic" data or the outsider perspective) to help them fill in the gaps in their analysis of applied planning research projects. Utilizing international Health Impact Assessment (HIA) data, I look at who planners invite to their citizen input investigations. Research presented in this paper shows that planners access a wide range of emic and etic community perspectives in their search for the “community’s view.” The paper concludes with how planners can chart out a new empirical path in their execution of emic/etic citizen participation strategies in their applied planning research projects.Keywords: citizen participation, emic data, etic data, Health Impact Assessment (HIA)
Procedia PDF Downloads 48425729 An Exploratory Study of the Meaning of Life of Delivery Agents of Kolkata
Authors: Soumitri Bag Majumder, Anindita Chaudhuri
Abstract:
This exploratory study delves into the perception of job dignity among delivery agents in Kolkata, focusing on both food and grocery delivery sectors. The rapid expansion of online delivery platforms in India has led to a significant rise in the delivery service industry. Despite its growth, there is a dearth of research addressing the multifaceted challenges faced by delivery agents. This study aims to bridge this gap by shedding light on their experiences. The study’s objectives include exploring the lived experiences of delivery agents, their work-life balance, and their perception of job dignity. Using a qualitative research approach, the study will conduct semi-structured in-depth interviews with a purposive sample of 10 participants from each sector, consisting of individuals with lower socio-economic backgrounds aged between 18 and 35 years. The Three-Layer Coding framework proposed by Charmaz will guide the data analysis process, encompassing open coding, axial coding, and selective coding. Through this method, the study seeks to uncover emergent themes and patterns that illuminate the participants’ perspectives on job dignity, recognition, and the challenges they encounter. By uncovering their perceptions of job dignity and the challenges they face, the research aims to contribute to the well-being of these workers and inform relevant stakeholders for a more equitable work environment.Keywords: delivery agents, equitable work environment, perception of job dignity, work-life balance
Procedia PDF Downloads 6425728 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18425727 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity
Authors: Robin C. Ladwig
Abstract:
The future of work becomes less predictable, which requires increasing the adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactory engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed about their organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.Keywords: future of work, occupational identity, organisational decision-making, trans and gender diverse identity
Procedia PDF Downloads 12725726 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales
Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng
Abstract:
Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.Keywords: landslides, modelling, rainfall, suction
Procedia PDF Downloads 18025725 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 14325724 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 14925723 Performance Evaluation of Wideband Code Division Multiplication Network
Authors: Osama Abdallah Mohammed Enan, Amin Babiker A/Nabi Mustafa
Abstract:
The aim of this study is to evaluate and analyze different parameters of WCDMA (wideband code division multiplication). Moreover, this study also incorporates brief yet throughout analysis of WCDMA’s components as well as its internal architecture. This study also examines different power controls. These power controls may include open loop power control, closed or inner group loop power control and outer loop power control. Different handover techniques or methods of WCDMA are also illustrated in this study. These handovers may include hard handover, inter system handover and soft and softer handover. Different duplexing techniques are also described in the paper. This study has also presented an idea about different parameters of WCDMA that leads the system towards QoS issues. This may help the operator in designing and developing adequate network configuration. In addition to this, the study has also investigated various parameters including Bit Energy per Noise Spectral Density (Eb/No), Noise rise, and Bit Error Rate (BER). After simulating these parameters, using MATLAB environment, it was investigated that, for a given Eb/No value the system capacity increase by increasing the reuse factor. Besides that, it was also analyzed that, noise rise is decreasing for lower data rates and for lower interference levels. Finally, it was examined that, BER increase by using one type of modulation technique than using other type of modulation technique.Keywords: duplexing, handover, loop power control, WCDMA
Procedia PDF Downloads 215