Search results for: hall electric propulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1629

Search results for: hall electric propulsion

279 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications

Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong

Abstract:

Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.

Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm

Procedia PDF Downloads 381
278 Access to Inclusive and Culturally Sensitive Mental Healthcare in Pharmacy Students and Residents

Authors: Esha Thakkar, Ina Liu, Kalynn Hosea, Shana Katz, Katie Marks, Sarah Hall, Cat Liu, Suzanne Harris

Abstract:

Purpose: Inequities in mental healthcare accessibility are cited as an international public health concern by the World Health Organization (WHO) and National Alliance on Mental Illness (NAMI). These disparities are further exacerbated in racial and ethnic minority groups and are especially concerning in health professional training settings such as Doctor of Pharmacy (PharmD) programs and postgraduate residency training where mental illness rates are high. The purpose of the study was to determine baseline access to culturally sensitive mental healthcare and how to improve such access and communication for racially and ethnically minoritized pharmacy students and residents at one school of pharmacy and a partnering academic medical center in the United States. Methods: This IRB-exempt study included 60-minute focus groups conducted in person or online from November 2021 to February 2022. Eligible participants included PharmD students in their first (P1), second (P2), third (P3), or fourth year (P4) or pharmacy residents completing a postgraduate year 1 (PGY1) or PGY2 who identify as Black, Indigenous, or Person of Color (BIPOC). There were four core theme questions asked during the focus groups to lead the discussion, specifically on the core themes of personal barriers, identities, areas that are working well, and areas for improvement. Participant responses were transcribed and analyzed using an open coding system with two individual reviews, followed by collaborative and intentional discussion and, as needed, an external audit of the coding by a third research team member to reach a consensus on themes. Results: This study enrolled 26 participants, with eight P1, five P2, seven P3, two P4, and four resident participants. Within the four core themes of barriers, identities, areas working well, and areas for improvement, emerging subthemes included: lack of time, access to resources, and stigma under barriers; lack of representation, cultural and family stigma, and gender identities for identity barriers; supportive faculty, sense of community and culture supporting paid time off for areas going well; and wellness days, reduced workload and diversity of the workforce in areas of improvement. Subthemes sometimes varied within a core theme depending on the participant year. Conclusions: There is a gap in the literature in addressing barriers and disparities in mental health access for pharmacy trainees who identify as BIPOC. We identified key findings in regards to barriers, identities, areas going well and areas for improvement that can inform the School and the Residency Program in two priority initiatives of well-being and diversity equity and inclusion in creating actionable recommendations for trainees, program directors, and employers of our institutions, and also has the potential to provide insight for other organizations about the structures influencing access to culturally sensitive care in BIPOC trainees. These findings can inform organizations on how to continue building on communication with those who identify as BIPOC and improve access to care.

Keywords: mental health, disparities, minorities, wellbeing, identity, communication, barriers

Procedia PDF Downloads 66
277 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil

Authors: Denise Levy

Abstract:

Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.

Keywords: information and communication technologies, nuclear technology, science communication, society and education

Procedia PDF Downloads 295
276 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 138
275 Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor

Authors: Hamed Rahmati

Abstract:

Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system.

Keywords: critical temperature, cryogenic system, high-temperature superconductors, YBCO

Procedia PDF Downloads 123
274 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings

Procedia PDF Downloads 107
273 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 234
272 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 162
271 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 83
270 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal

Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi

Abstract:

The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.

Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation

Procedia PDF Downloads 27
269 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 122
268 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design

Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic

Abstract:

Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.

Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec

Procedia PDF Downloads 138
267 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 271
266 Module Based Review over Current Regenerative Braking Landing Gear

Authors: Madikeri Rohit

Abstract:

As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.

Keywords: regenerative braking, types of energy conversion, landing gear, energy storage

Procedia PDF Downloads 233
265 Thermal Characteristics of Sewage Sludge to Develop an IDPG Technology

Authors: Young Nam Chun, Mun Sup Lim, Byeo Ri Jeong

Abstract:

Sewage sludge is regarded as the residue produced by the waste water treatment process, during which liquids and solids are being separated. Thermal treatments are interesting techniques to stabilize the sewage sludge for disposal. Among the thermal treatments, pyrolysis and/or gasification has been being applied to the sewage sludge. The final goal of our NRF research is to develop a microwave In-line Drying-Pyrolysis-Gasification (IDPG) technology for the dewatered sewage sludge for the bio-waste to energy conversion. As a first step, the pyrolysis characteristics in a bench scale electric furnace was investigated at 800℃ for the dewatered sludge and dried sludge samples of which moisture contents are almost 80% and 0%, respectively. Main components of producer gas are hydrogen and carbon dioxide. Particularly, higher hydrogen for the dewatered sludge is shown as 75%. The hydrogen production for the dewatered sludge and dried sludge are 56% and 32%, respectively. However, the pyrolysis for the dried sludge produces higher carbon dioxide and other gases, while higher methane and carbon dioxide are given to 74% and 53%, respectively. Tar also generates during the pyrolysis process, showing lower value for case of the dewatered sludge. Gravimetric tar is 195 g/m3, and selected light tar like benzene, naphthalene, anthracene, pyrene are 9.4 g/m3, 2.1 g/m3, 0.5 g/m3, 0.3 g/m3, respectively. After the pyrolysis process, residual char for the dewatered sludge and dried sludge remain 1g and 1.3g, showing weight reduction rate of 93% and 57%, respectively. Through the results, this could be known that the dewatered sludge can be used to produce a clean hydrogen-rich gas fuel without the drying process. Therefore, the IDPG technology can be applied effectively to the energy conversion for dewater sludge waste without a drying pretreatment. Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1A2A2A03003044).

Keywords: pyrolysis, gasification, sewage sludge, tar generation, producer gas, sludge char, biomass energy

Procedia PDF Downloads 326
264 Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit

Authors: Gabriella Zarlenga, Martha L. Hall

Abstract:

Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions.

Keywords: kangaroo care, wearable technology, pre-term infants, medical design

Procedia PDF Downloads 137
263 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 285
262 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 191
261 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks

Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy

Abstract:

Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.

Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system

Procedia PDF Downloads 147
260 Energy Storage in the Future of Ethiopia Renewable Electricity Grid System

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy strategy focuses mainly on generating and utilization of Renewable Energy (RE). The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources on the grid from solar and wind energy were only 8 % of the total energy produced. On the other hand, the EEP electricity generation plan in 2030 indicates that 36 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the Energy PLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EPM analysis for two predictive scenarios. The EPM simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Hence, the model’s results are in line with the actual 2016 output. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EPM simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was dominant in all months except in the three rainy months of the year (June, July, and August). Consequently, based on the validated outcomes of EPM indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that; if the excess power is utilized with a storage mechanism that can stabilize the grid system; as a result, the extra RE generated can be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming energy storage system to synchronize with RE potentials that can be generated from RE.

Keywords: renewable energy, storage, wind, energyplan

Procedia PDF Downloads 52
259 Research of Actuators of Common Rail Injection Systems with the Use of LabVIEW on a Specially Designed Test Bench

Authors: G. Baranski, A. Majczak, M. Wendeker

Abstract:

Currently, the most commonly used solution to provide fuel to the diesel engines is the Common Rail system. Compared to previous designs, as a due to relatively simple construction and electronic control systems, these systems allow achieving favourable engine operation parameters with particular emphasis on low emission of toxic compounds into the atmosphere. In this system, the amount of injected fuel dose is strictly dependent on the course of parameters of the electrical impulse sent by the power amplifier power supply system injector from the engine controller. The article presents the construction of a laboratory test bench to examine the course of the injection process and the expense in storage injection systems. The test bench enables testing of injection systems with electromagnetically controlled injectors with the use of scientific engineering tools. The developed system is based on LabView software and CompactRIO family controller using FPGA systems and a real time microcontroller. The results of experimental research on electromagnetic injectors of common rail system, controlled by a dedicated National Instruments card, confirm the effectiveness of the presented approach. The results of the research described in the article present the influence of basic parameters of the electric impulse opening the electromagnetic injector on the value of the injected fuel dose. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: fuel injector, combustion engine, fuel pressure, compression ignition engine, power supply system, controller, LabVIEW

Procedia PDF Downloads 103
258 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica

Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson

Abstract:

Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.

Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility

Procedia PDF Downloads 59
257 Affordable Aerodynamic Balance for Instrumentation in a Wind Tunnel Using Arduino

Authors: Pedro Ferreira, Alexandre Frugoli, Pedro Frugoli, Lucio Leonardo, Thais Cavalheri

Abstract:

The teaching of fluid mechanics in engineering courses is, in general, a source of great difficulties for learning. The possibility of the use of experiments with didactic wind tunnels can facilitate the education of future professionals. The objective of this proposal is the development of a low-cost aerodynamic balance to be used in a didactic wind tunnel. The set is comprised of an Arduino microcontroller, programmed by an open source software, linked to load cells built by students from another project. The didactic wind tunnel is 5,0m long and the test area is 90,0 cm x 90,0 cm x 150,0 cm. The Weq® electric motor, model W-22 of 9,2 HP, moves a fan with nine blades, each blade 32,0 cm long. The Weq® frequency inverter, model WEGCFW 08 (Vector Inverter) is responsible for wind speed control and also for the motor inversion of the rotational direction. A flat-convex profile prototype of airfoil was tested by measuring the drag and lift forces for certain attack angles; the air flux conditions remained constant, monitored by a Pitot tube connected to a EXTECH® Instruments digital pressure differential manometer Model HD755. The results indicate a good agreement with the theory. The choice of all of the components of this proposal resulted in a low-cost product providing a high level of specific knowledge of mechanics of fluids, which may be a good alternative to teaching in countries with scarce educational resources. The system also allows the expansion to measure other parameters like fluid velocity, temperature, pressure as well as the possibility of automation of other functions.

Keywords: aerodynamic balance, wind tunnel, strain gauge, load cell, Arduino, low-cost education

Procedia PDF Downloads 413
256 A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries

Authors: Kodo Sektani, Apostolos Tsouvalas, Andrei Metrikine

Abstract:

The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes.

Keywords: Dynamics of movable bridges, Bridge machinery, Powertrains, Torque measurements

Procedia PDF Downloads 129
255 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company

Authors: Korpapa Srisamai, Pawee Siriruk

Abstract:

The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.

Keywords: demand forecast, reorder point, lost sale, dead stock

Procedia PDF Downloads 89
254 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System

Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi

Abstract:

Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.

Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation

Procedia PDF Downloads 454
253 Spatial Transformation of Heritage Area as The Impact of Tourism Activity (Case Study: Kauman Village, Surakarta City, Central Java, Indonesia

Authors: Nafiah Solikhah Thoha

Abstract:

One area that has spatial character as Heritage area is Kauman Villages. Kauman village in The City of Surakarta, Central Java, Indonesia was formed in 1757 by Paku Buwono III as the King of Kasunanan kingdom (Mataram Kingdom) for Kasunanan kingdom courtiers and scholars of Madrasa. Spatial character of Kauman village influenced by Islamic planning and socio-cultural rules of Kasunanan Kingdom. As traditional settlements influenced by Islamic planning, the Grand Mosque is a binding part of the whole area. Circulation pattern forming network (labyrinth) with narrow streets that ended at the Grand Mosque. The outdoor space can be used for circulation. Social activity is dominated by step movement from one place to a different place. Stalemate (the fina/cul de sac) generally only passable on foot, bicycles, and motorcycles. While the pass (main and branch) can be traversed by motor, vehicles. Kauman village has an area that can not be used as a public road that penetrates and serves as a liaison between the outside world to the other. Hierarchy of hall in Kauman village shows that the existence of a space is getting into more important. Firstly, woman in Kauman make the handmade batik for themself. In 2005 many people improving batik tradisional into commercial, and developed program named "Batik Tourism village of Kauman". That program affects the spatial transformations. This study aimed to explore the influence of tourism program towards spatial transformations. The factors that studied are the organization of space, circulation patterns, hierarchical space, and orientation through the descriptive-evaluation approach methods. Based on the study, tourism activity engenders transformations on the spatial scale (macro), residential block (mezo), homes (micro). First, the Grand Mosque and madrasa (religious school) as a binding zoning; tangle of roads as forming the structure of the area developed as a liaison with outside Kauman; organization of space in the residential of batik entrepreneurs firstly just a residential, then develop into residential, factory of batik including showroom. Second, the circulation pattern forming network (labyrinth) and ends at the Grand Mosque. Third, the hierarchy in the form of public space (the shari), semi-public, and private (the fina/culdesac) is no longer to provide protection to women, only as hierarchy of circulation path. Fourth, cluster building orientation does not follow the kiblat direction or axis oriented to cosmos, but influence by the new function as the showroom. It was need the direction of the main road. Kauman grow as an appropriate area for the community. During its development, the settlement function changes according to community activities, especially economic activities. The new function areas as tourism area affect spatial pattern of Kauman village. Spatial existence and activity as a local wisdom that has been done for generations have meaning of holistic, encompassing socio-cultural sustainability, economics, and the heritage area. By reviewing the local wisdom and the way of life of that society, we can learn how to apply the culture as education for sustainable of heritage area.

Keywords: impact of tourism, Kauman village, spatial transformation, sustainable of heritage area

Procedia PDF Downloads 405
252 Investigation of the Physicochemistry in Leaching of Blackmass for the Recovery of Metals from Spent Lithium-Ion Battery

Authors: Alexandre Chagnes

Abstract:

Lithium-ion battery is the technology of choice in the development of electric vehicles. This technology is now mature, although there are still many challenges to increase their energy density while ensuring an irreproachable safety of use. For this goal, it is necessary to develop new cathodic materials that can be cycled at higher voltages and electrolytes compatible with these materials. But the challenge does not only concern the production of efficient batteries for the electrochemical storage of energy since lithium-ion battery technology relies on the use of critical and/or strategic value resources. It is, therefore, crucial to include Lithium-ion batteries development in a circular economy approach very early. In particular, optimized recycling and reuse of battery components must both minimize their impact on the environment and limit geopolitical issues related to tensions on the mineral resources necessary for lithium-ion battery production. Although recycling will never replace mining, it reduces resource dependence by ensuring the presence of exploitable resources in the territory, which is particularly important for countries like France, where exploited or exploitable resources are limited. This conference addresses the development of a new hydrometallurgical process combining leaching of cathodic material from spent lithium-ion battery in acidic chloride media and solvent extraction process. Most of recycling processes reported in the literature rely on the sulphate route, and a few studies investigate the potentialities of the chloride route despite many advantages and the possibility to develop new chemistry, which could get easier the metal separation. The leaching mechanisms and the solvent extraction equilibria will be presented in this conference. Based on the comprehension of the physicochemistry of leaching and solvent extraction, the present study will introduce a new hydrometallurgical process for the production of cobalt, nickel, manganese and lithium from spent cathodic materials.

Keywords: lithium-ion battery, recycling, hydrometallurgy, leaching, solvent extraction

Procedia PDF Downloads 48
251 Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant

Authors: R. K. Saket

Abstract:

This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper.

Keywords: self excited induction generator, annual and daily flow duration curve, sewage system, municipal waste water, reliability evaluation, Gaussian distribution, Simpson 1/3rd rule

Procedia PDF Downloads 538
250 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor

Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya

Abstract:

The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.

Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor

Procedia PDF Downloads 357