Search results for: fine and ultrafine particles
1260 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles
Procedia PDF Downloads 3991259 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3771258 Proposing a Failure Criterion for Cohesionless Media Considering Cyclic Fabric Anisotropy
Authors: Ali Noorzad, Ehsan Badakhshan, Shima Zameni
Abstract:
The present paper is focused on a generalized failure criterion for geomaterials with cross-anisotropy. The cyclic behavior of granular material primarily depends on the nature and arrangement of constituent particles, particle size, and shape that affect fabric anisotropy. To account for the influence of loading directions on strength variations, an anisotropic variable in terms of the invariants of the stress tensor and fabric into the failure criterion is proposed. In an extension to original CANAsand constitutive model two concepts namely critical state and compact state play paramount roles as all of the moduli and coefficients are related to these states. The applicability of the present model is evaluated through comparisons between the predicted and the measured results. All simulations have demonstrated that the proposed constitutive model is capable of modeling the cyclic behavior of sand with inherent anisotropy.Keywords: fabric, cohesionless media, cyclic loading, critical state, compact state, CANAsand constitutive model
Procedia PDF Downloads 2191257 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence
Procedia PDF Downloads 4211256 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites
Authors: K. N. Umesh
Abstract:
Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites
Procedia PDF Downloads 2491255 Using the Timepix Detector at CERN Accelerator Facilities
Authors: Andrii Natochii
Abstract:
The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.Keywords: beam monitoring, channeling, particle tracking, Timepix detector
Procedia PDF Downloads 1801254 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy
Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini
Abstract:
The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering
Procedia PDF Downloads 2231253 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues
Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis
Abstract:
The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current
Procedia PDF Downloads 3471252 Quantum Technologies, the Practical Challenges to It, and Ideas to Build an Inclusive Quantum Platform, Shoonya Ecosystem (Zero-Point Energy)
Authors: Partha Pratim Kalita
Abstract:
As sound can be converted to light, light can also be deduced to sound. There are technologies to convert light to sound, but there are not many technologies related to the field where sound can be converted to a distinct vibrational sequence of light. Like the laws under which the principles of sound work, there are principles for the light to become quantum in nature. Thus, as we move from sound to the subtler aspects of light, we are moving from 3D to 5D. Either we will be making technologies of 3D in today’s world, or we will be really interested in making technologies of the 5D, depends on our understanding of how quantum 5D works. Right now, the entire world is talking about quantum, which is about the nature and behavior of subatomic particles, which is 5D. In practice, they are using metals and machines based on atomic structures. If we talk of quantum without taking note of the technologies of 5D and beyond, we will only be reinterpreting relative theories in the name of quantum. This paper, therefore, will explore the possibilities of moving towards quantum in its real essence with the Shoonya ecosystem (zero-point energy). In this context, the author shall highlight certain working models developed by him, which are currently in discussion with the Indian government.Keywords: quantum mechanics, quantum technologies, healthcare, shoonya ecosystem, energy, human consciousness
Procedia PDF Downloads 1951251 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content
Authors: S. Asreazad
Abstract:
This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.Keywords: unsaturated soils, silty sand, clayey sand, triaxial test
Procedia PDF Downloads 3311250 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.Keywords: reinforcement, silicon carbide, fly ash, red mud
Procedia PDF Downloads 1591249 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics
Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky
Abstract:
The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper
Procedia PDF Downloads 2461248 The Probability Foundation of Fundamental Theoretical Physics
Authors: Quznetsov Gunn
Abstract:
In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter.Keywords: classical theory of probability, logical foundation of fundamental theoretical physics, masses, moments, energies, spins
Procedia PDF Downloads 2951247 Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018
Authors: Yonghun Ro, Joo-Wan Cha, Sanghee Chae, Areum Ko, Woonseon Jung, Jong-Chul Ha
Abstract:
National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments.Keywords: cloud seeding, reflectivity, weather radar, seeding effect
Procedia PDF Downloads 1701246 Homosexuality in Burundi and Homosexuals Rights
Authors: Ciza Didier
Abstract:
By definition, homosexuality designates the sexual or amorous attraction towards a person of the same sex or of the same gender as one's own. The Burundi country has superficially 27834km2 with 13 millions of population. There are groups of certain people assuming that they are homosexual and that they want to claim their rights. Burundian homosexuals often organise seminars in the premises of the National Health Security Agency (NHSA) located at Kigobe quarter, in Bujumbura, this is the place where they meet to try to exchange and create their association for claim their rights. There are 2 categories of homosexuals: - gays: homosexuality between men (male sex) - lesbians: homosexuality between women (female sex) In the gay couple, there is one who behaves like a woman and often wears feminine styles while the other always remains like a man and always wears masculine styles. In the lesbian couple, there is one who behaves like a man and wears men's styles while the other remains as she is like a woman. In general, Burundian society is against homosexuality. Our society sees them as pariahs carrying a curse. According to Burundian culture and customs, homosexuality is satanic, therefore it is a great sin. In April 2011, Burundian President Pierre Nkurunziza signed a law criminalizing homosexual acts and providing for a sentence of three months to two years in prison, as well as a fine of BIF 50,000 to BIF 100,000 for any homosexual behavior. The investigation recently done shows that out of 300 people questioned, 299 were against homosexuality saying that it is against Burundian culture and 1 was for homosexuality. All Burundians are not against homosexuality. Their country must therefore take into consideration the small party of people who are for homosexuality. Homosexuals, too, need to live like others.Keywords: homosexuality, lesbian, gay, law
Procedia PDF Downloads 701245 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical
Authors: Seyedmahdi Mousavihashemi
Abstract:
Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.Keywords: biomedical engineering, nano composite, SEM, TEM
Procedia PDF Downloads 2381244 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications
Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy
Abstract:
The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,
Procedia PDF Downloads 4081243 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell
Authors: Prasanta Sutradhar, Mitali Saha
Abstract:
With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics
Procedia PDF Downloads 4021242 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading
Authors: K. Rajalakshmi, A. Vasudevan
Abstract:
The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug
Procedia PDF Downloads 2881241 A New Social Vulnerability Index for Evaluating Social Vulnerability to Climate Change at the Local Scale
Authors: Cuong V Nguyen, Ralph Horne, John Fien, France Cheong
Abstract:
Social vulnerability to climate change is increasingly being acknowledged, and proposals to measure and manage it are emerging. Building upon this work, this paper proposes an approach to social vulnerability assessment using a new mechanism to aggregate and account for causal relationships among components of a Social Vulnerability Index (SVI). To operationalize this index, the authors propose a means to develop an appropriate primary dataset, through application of a specifically-designed household survey questionnaire. The data collection and analysis, including calibration and calculation of the SVI is demonstrated through application in case study city in central coastal Vietnam. The calculation of SVI at the fine-grained local neighbourhood scale provides high resolution in vulnerability assessment, and also obviates the need for secondary data, which may be unavailable or problematic, particularly at the local scale in developing countries. The SVI household survey is underpinned by the results of a Delphi survey, an in-depth interview and focus group discussions with local environmental professionals and community members. The research reveals inherent limitations of existing SVIs but also indicates the potential for their use in assessing social vulnerability and making decisions associated with responding to climate change at the local scale.Keywords: climate change, local scale, social vulnerability, social vulnerability index
Procedia PDF Downloads 4351240 Electrokinetic Application for the Improvement of Soft Clays
Authors: Abiola Ayopo Abiodun, Zalihe Nalbantoglu
Abstract:
The electrokinetic application (EKA), a relatively modern chemical treatment has a potential for in-situ ground improvement in an open field or under existing structures. It utilizes a low electrical gradient to transport electrolytic chemical ions between bespoke electrodes inserted in the fine-grained, low permeable soft soils. The paper investigates the efficacy of the EKA as a mitigation technique for the soft clay beds. The laboratory model of the EKA comprises of rectangular plexiglass test tank, electrolytes compartments, geosynthetic electrodes and direct electric current supply. Within this setup, the EK effects resulted from the exchange of ions between anolyte (anodic) and catholyte (cathodic) ends through the tested soil were examined by basic experimental laboratory testing methods. As such, the treated soft soil properties were investigated as a function of the anode-to-cathode distances and curing periods. The test results showed that there have been some changes in the physical and engineering properties of the treated soft soils. The significant changes in the physicochemical and electrical properties suggested that their corresponding changes can be utilized as a monitoring technique to evaluate the improvement in the engineering properties EK treated soft clay soils.Keywords: electrokinetic, electrolytes, exchange ions, geosynthetic electrodes, soft soils
Procedia PDF Downloads 3151239 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 351238 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites
Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh
Abstract:
Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide
Procedia PDF Downloads 2961237 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 3201236 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem
Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn
Abstract:
At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.Keywords: CPTU, pore water pressure, pile rebound
Procedia PDF Downloads 3211235 Thermal Property Improvement of Silica Reinforced Epoxy Composite Specimens
Authors: Hyu Sang Jo, Gyo Woo Lee
Abstract:
In this study, the mechanical and thermal properties of epoxy composites that are reinforced with micrometer-sized silica particles were investigated by using the specimen experiments. For all specimens used in this study (from the baseline to specimen containing 70 wt% silica filler), the tensile strengths were gradually increased by 8-10%, but the ductility of the specimen was decreased by 34%, compared with those of the baseline samples. Similarly, for the samples containing 70 wt% silica filler, the coefficient of thermal expansion was reduced by 25%, but the thermal conductivity was increased by 100%, compared with those of the baseline samples. The improvement of thermal stability of the silica-reinforced specimen was confirmed to be within the experimented range, and the smaller silica particle was found to be more effective in delaying the thermal expansion of the specimens. When the smaller particle was used as filler, due to the increased specific interface area between filler and matrix, the thermal conductivities of the composite specimens were measured to be slightly lower than those of the specimens reinforced with the larger particle.Keywords: carbon nanotube filler, epoxy composite, mechanical property, thermal property
Procedia PDF Downloads 2361234 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.Keywords: clay, coal, resistance to compression, insulating bricks
Procedia PDF Downloads 3291233 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 341232 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting
Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy
Abstract:
In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics
Procedia PDF Downloads 1711231 PM₁₀ and PM2.5 Concentrations in Bangkok over Last 10 Years: Implications for Air Quality and Health
Authors: Tin Thongthammachart, Wanida Jinsart
Abstract:
Atmospheric particulate matter particles with a diameter less than 10 microns (PM₁₀) and less than 2.5 microns (PM₂.₅) have adverse health effect. The impact from PM was studied from both health and regulatory perspective. Ambient PM data was collected over ten years in Bangkok and vicinity areas of Thailand from 2007 to 2017. Statistical models were used to forecast PM concentrations from 2018 to 2020. Monitoring monthly data averaged concentration of PM₁₀ and PM₂.₅ were used as input to forecast the monthly average concentration of PM. The forecasting results were validated by root means square error (RMSE). The predicted results were used to determine hazard risk for the carcinogenic disease. The health risk values were interpolated with GIS with ordinary kriging technique to create hazard maps in Bangkok and vicinity area. GIS-based maps illustrated the variability of PM distribution and high-risk locations. These evaluated results could support national policy for the sake of human health.Keywords: PM₁₀, PM₂.₅, statistical models, atmospheric particulate matter
Procedia PDF Downloads 159