Search results for: dominant growth models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13708

Search results for: dominant growth models

12358 Antifungal Potential of Higher Basidiomycetes Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani

Abstract:

Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.

Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation

Procedia PDF Downloads 141
12357 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing

Authors: Kedar Hardikar, Joe Varghese

Abstract:

Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications

Keywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.

Procedia PDF Downloads 133
12356 Survey and Identification of Coinfecting Botryosphaeriales Causing Stem Canker Diseases of Eucalyptus camaldulensis in Ethiopia

Authors: Wendu Admasu, Assefa Sintayehu, Alemu Gezahgne, Zewdu Terefework

Abstract:

Eucalyptus is the most widely planted forest tree species in the world. In Ethiopia, pathogenic fungi pose an increasing threat to Eucalyptus species. Due to limited research, there is insufficient information on the associated diseases and pathogens. This study investigated Eucalyptus diseases, the extent of their damage, and the causal fungal pathogens. A Eucalyptus disease survey was conducted in the Eucalyptus forestry areas of Ethiopia during the growth years 2019/20 and 2020/21. Disease assessment and sampling were carried out in eighteen plantations at nine locations. E. camaldulensis was the most dominant species planted in the surveyed areas. The field study shows a high incidence and severity of canker diseases. Diseased stem and branch samples were collected, cultured on malt extract agar media and studied. The results of morphological and ITS sequence analysis confirmed that the fungal species Neofusicoccum parvum, Lasiodiplodia theobromae, and Aplosporella hesperidica caused the observed canker symptoms. This is the first report of Lasiodiplodia theobromae and Aplosporella hesperidica causing diseases in Eucalyptus plants in Ethiopia. Changes in global climate and environmental factors, such as altitude, are believed to have a strong impact on the susceptibility of Eucalyptus plants to diseases. Strict quarantine practices and continuous monitoring of pathogenic and endophytic fungal species associated with Eucalyptus trees are issued to be prioritized to effectively control and manage the disease.

Keywords: Neofusicoccum, Lasiodiplodia, Aplosporella, pathogenicity, phylogeny, severity

Procedia PDF Downloads 67
12355 Fatal Attractions: Exploiting Olfactory Communication between Invasive Predators for Conservation

Authors: Patrick M. Garvey, Roger P. Pech, Daniel M. Tompkins

Abstract:

Competition is a widespread interaction and natural selection will encourage the development of mechanisms that recognise and respond to dominant competitors, if this information reduces the risk of a confrontation. As olfaction is the primary sense for most mammals, our research tested whether olfactory ‘eavesdropping’ mediates alien species interactions and whether we could exploit our understanding of this behaviour to create ‘super-lures’. We used a combination of pen and field experiments to evaluate the importance of this behaviour. In pen trials, stoats (Mustela erminea) were exposed to the body odour of three dominant predators (cat / ferret / African wild dog) and these scents were found to be attractive. A subsequent field trial tested whether attraction displayed towards predator odour, particularly ferret (Mustela furo) pheromones, could be replicated with invasive predators in the wild. We found that ferret odour significantly improved detection and activity of stoats and hedgehogs (Erinaceus europaeus), while also improving detections of ship rats (Rattus rattus). Our current research aims to identify the key components of ferret odour, using chemical analysis and behavioural experiments, so that we can produce ‘scent from a can’. A lure based on a competitors’ odour would be beneficial in many circumstances including: (i) where individuals display variability in attraction to food lures, (ii) there are plentiful food resources available, (iii) new immigrants arrive into an area, (iv) long-life lures are required. Pest management can therefore benefit by exploiting behavioural responses to odours to achieve conservation goals.

Keywords: predator interactions, invasive species, eavesdropping, semiochemicals

Procedia PDF Downloads 410
12354 Toward the Understanding of Shadow Port's Growth: The Level of Shadow Port

Authors: Chayakarn Bamrungbutr, James Sillitoe

Abstract:

The term ‘shadow port’ is used to describe a port whose markets are dominated by an adjacent port that has a more competitive capability. Recently, researchers have put effort into studying the mechanisms of how a regional port, in the shadow of a nearby predominant port which is a capital city port, can compete and grow. However, such mechanism is still unclear. This study thus focuses on understanding the growth of shadow port and the type of shadow port by using the two capital city ports of Thailand; Bangkok port (the former main port) and Laem Chabang port (the current main port), as the case study. By developing an understanding of the mechanisms of shadow, port could ultimately lead to an increase in the competitiveness. In this study, a framework of opportunity capture (introduced by Magala, 2004) will be used to create a framework for the study of the growth of the selected shadow port. In the process of building this framework, five groups of port development experts, consisting of government, council, academia, logistics provider and industry, will be interviewed. To facilitate this work, the Noticing, Collecting and Thinking model which was developed by Seidel (1998) will be used in an analysis of the dataset. The resulting analysis will be used to classify the type of shadow port. The type of these ports will be a significant factor for developing a feasible strategic guideline for the future management planning of ports, particularly, shadow ports, and then to increase the competitiveness of a nation’s maritime transport industry, and eventually lead to a boost in the national economy.

Keywords: shadow port, Bangkok Port, Laem Chabang Port, port growth

Procedia PDF Downloads 175
12353 How to Perform Proper Indexing?

Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan

Abstract:

Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.

Keywords: indexing, hashing, latent semantic indexing, B-tree

Procedia PDF Downloads 154
12352 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution

Authors: Rafid Saeed Abdulrazak Alshkaki

Abstract:

In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.

Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling

Procedia PDF Downloads 292
12351 Analyzing the Evolution and Maturation of Bitcoin Improvement Proposals

Authors: Rodrigo Costa, Thomas Mazzuchi, Shahram Sarkani

Abstract:

This study analyzes the evolution of Bitcoin Improvement Proposals (BIPs), the self-governing mechanism that enables updates to the Bitcoin protocol. By modeling BIP submission frequencies with a Negative Binomial distribution and detecting change points with the Pelt Rupture model, we identify three distinct intervals of proposal activity, suggesting shifts in development priorities over time. Long-term growth patterns, captured by Gompertz and Weibull models, indicate an S-shaped trend in cumulative BIP counts, pointing toward a maturation phase in Bitcoin’s protocol. Our findings suggest that Bitcoin may be entering a stable stage, with fewer fundamental changes and more incremental enhancements. This trend highlights the need for further research into BIP content and more studies into its dynamics to better understand decentralized protocol governance and maturation.

Keywords: bitcoin improvement proposals, innovation management, change point detection, systems modeling, simulation

Procedia PDF Downloads 4
12350 Liquidity and Cash Management Practices of Owner-Managed Firms-A Case of South East, Nigeria

Authors: Ugbor Raphael Oluchukwu

Abstract:

The survey research design was adopted to examine whether liquidity and cash management practices of owner-managed firms in South East Nigeria influence their profitability, growth and survival. Four independent variables (accounting systems, working capital management, budgetary control, and managerial planning) were used in the evaluation which was restricted to eight small firms. Results indicate that one variable, working capital management alone dominate the liquidity perception of owner managers. As a result, owner managers find it difficult to meet maturing business obligations as growth sets in. The study also reveals that the four independent variables have significant impact on the profitability, growth and survival of owner managed firms. Owner managers are therefore advised to undertake regular entrepreneurship training in order to upgrade their liquidity and cash management knowledge and practices to enhance their overall performance.

Keywords: liquidity management, owner-managed firm, profitability, survival

Procedia PDF Downloads 429
12349 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 298
12348 Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics

Authors: Serier Bouchenak NORA, Bouguerni ABDELMADJID

Abstract:

Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species.

Keywords: aloe vera, probiotics, prebiotics, growth rate, bifidobacteria

Procedia PDF Downloads 68
12347 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 143
12346 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy

Abstract:

This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.

Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation

Procedia PDF Downloads 82
12345 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 54
12344 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 286
12343 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 295
12342 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 85
12341 Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey

Authors: Ibrahim Can, Fatih Tosunoğlu

Abstract:

The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented.

Keywords: ARMA models, Çoruh basin, flow duration curve, Turkey

Procedia PDF Downloads 402
12340 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, job satisfaction, learning and growth, Bangkok

Procedia PDF Downloads 489
12339 The Impact of Project Management Approaches in Enhancing Entrepreneurial Growth: A Study Using the Theory of Planned Behaviour as a Lens to Understand

Authors: Akunna Agunwah, Kevin Gallimore, Kathryn Kinnmond

Abstract:

Entrepreneurship and project management are widely associated and seen as a vehicle for economic growth, but are studied separately. A few authors have considered the interconnectivity existing between these two fields, but relatively little empirical data currently exist in the literature. The purpose of the present empirical study is to explore whether successful entrepreneurs utilise project management approaches in enhancing enterprise growth by understanding the working practices and experiences of the entrepreneurs’ using the Theory of Planned Behaviour (TPB) as a lens. In order to understand those experiences, ten successful entrepreneurs in various business sectors in the North West of England were interviewed through a face-to-face semi-structured interview method. The collected audio tape-recorded data was transcribed and analysed using the deductive thematic technique (qualitative approach). The themes were viewed through the lens of Theory of Planned Behaviour to identify the three intentional antecedents (attitude, subjective norms, and perceived behavioural control) and to understand how they relate to the project management approaches (Planning, execution, and monitoring). The findings are twofold, the first evidence of the three intentional antecedents, which make up Theory of Planned Behaviour was present. Secondly, the analysis of project management approaches themes (planning, execution, and monitoring) using the lens of the theory of planned behaviour shows evidence of the three intentional antecedents. There were more than one intentional antecedents found in a particular project management theme, which indicates that the entrepreneur does utilise these approaches without categorising them into definite themes. However, the entrepreneur utilised these intentional antecedents as processes to enhanced business growth. In conclusion, the work presented here showed a way of understanding the interconnectivity between entrepreneurship and project management towards enhancing enterprise growth by examining the working practices and experiences of the successful entrepreneurs in the North-West England.

Keywords: business growth, entrepreneurship, project management approaches, theory of planned behaviour

Procedia PDF Downloads 205
12338 Induced Affectivity and Impact on Creativity: Personal Growth and Perceived Adjustment when Narrating an Intense Emotional Experience

Authors: S. Da Costa, D. Páez, F. Sánchez

Abstract:

We examine the causal role of positive affect on creativity, the association of creativity or innovation in the ideation phase with functional emotional regulation, successful adjustment to stress and dispositional emotional creativity, as well as the predictive role of creativity for positive emotions and social adjustment. The study examines the effects of modification of positive affect on creativity. Participants write three poems, narrate an infatuation episode, answer a scale of personal growth after this episode and perform a creativity task, answer a flow scale after creativity task and fill a dispositional emotional creativity scale. High and low positive effect was induced by asking subjects to write three poems about high and low positive connotation stimuli. In a neutral condition, tasks were performed without previous affect induction. Subjects on the condition of high positive affect report more positive and less negative emotions, more personal growth (effect size r = .24) and their last poem was rated as more original by judges (effect size r = .33). Mediational analysis showed that positive emotions explain the influence of the manipulation on personal growth - positive affect correlates r = .33 to personal growth. The emotional creativity scale correlated to creativity scores of the creative task (r = .14), to the creativity of the narration of the infatuation episode (r = .21). Emotional creativity was also associated, during performing the creativity task, with flow (r = .27) and with affect balance (r = .26). The mediational analysis showed that emotional creativity predicts flow through positive affect. Results suggest that innovation in the phase of ideation is associated with a positive affect balance and satisfactory performance, as well as dispositional emotional creativity is adaptive.

Keywords: affectivity, creativity, induction, innovation, psychological factors

Procedia PDF Downloads 108
12337 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 441
12336 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 378
12335 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria

Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi

Abstract:

Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.

Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,

Procedia PDF Downloads 228
12334 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 151
12333 Impact of Light Intensity, Illumation Strategy and Self-Shading on Sustainable Algal Growth in Photo Bioreactors

Authors: Amritanshu Shriwastav, Purnendu Bose

Abstract:

Algal photo bioreactors were operated at incident light intensities of 0.24, 2.52 and 5.96 W L-1 to determine the impact of light on algal growth. Low specific Chlorophyll-a content of algae was a strong indicator of light induced stress on algal cells. It was concluded that long term operation of photo bioreactors in the continuous illumination mode was infeasible under the range of incident light intensities examined and provision of a dark period after each light period was necessary for algal cells to recover from light-induced stress. Long term operation of photo bioreactors in the intermittent illumination mode was however possible at light intensities of 0.24 and 2.52 W L-1. Further, the incident light intensity in the photo bioreactors was found to decline exponentially with increase in algal concentration in the reactor due to algal ‘self-shading’. This may be an important determinant for photo bioreactor performance at higher algal concentrations.

Keywords: Algae, algal growth, photo bioreactor, photo-inhibition, ‘self-shading’

Procedia PDF Downloads 317
12332 Effect of Far Infrared and Endothelial Cell Growth Supplement on Human Umbilical Vascular Endothelial Cells

Authors: Ming-Tzu Tsai, Jui-Ting Hsu, Chia-Chieh Lin, Feng-Tsai Chiang, Cheng-Chin Huang

Abstract:

Far infrared (FIR), an invisible and short electromagnetic waves ranges from 6-14 μm also defines as the “growth ray.” Although the mechanism of FIR is still unknown, most data have suggested that FIR could accelerate the skin microcirculation by elevating the blood flow and nitric-oxide (NO) synthesis. In this present work, the effect of FIR irradiation and endothelial cell growth supplement (ECGS) on human umbilical vascular endothelial cells (HUVECs) was evaluated. To understand whether the cell viability and NO production of HUVECs affected by NO, cells with/without ECGS were treated in the presence or absence of L-NAME, an eNOS inhibitor. For FIR exposure, FIR-emitted ceramic powders consisted of a variety of well-mixed metal oxides were developed. The results showed that L-NAME did had a strong effect on the inhibition of NO production, especially in the ECGS-treated group. However, the cell viability of each group was rarely affected in the presence of L-NAME. Cells with the incubation of ECGS showed much higher cell viability compared to the control. Moreover, NO production of HUVECs exposed to FIR irradiation was significantly inhibited in the presence of L-NAME. It suggested that NO could play a role modulating the downstream signals of HUVECs during FIR exposure.

Keywords: far-infrared irradiation (FIR), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), endothelial cell growth supplement (ECGS)

Procedia PDF Downloads 427
12331 Antifungal Lactobacilli Affect Mycelium Morphology and Protect Apricot Juice against Mold Spoilage

Authors: Nora Laref, Bettache Guessas

Abstract:

Preservation of foods mainly depends on delaying or inhibiting the growth of spoilage microorganisms, and antifungal activity of lactic acid bacteria is one of the technological properties researched. The antifungal activity was screened with overlay method of six strains of lactic acid bacteria (Lactobacillus plantarum LB54, LB52, LB51, LB20, LB24 Lactobacillus farciminis LB53) isolated from silage, camel milk and carrot against Aspergillus sp. Lactobacillus plantarum and farciminis inhibit spore germination and mycelia growth of Aspergillus sp., the production of antifungal compounds by these strains was detectable after 4h of incubation at 30°C and show total inhibition after 24h in liquid media, but in solid media showed a good inhibition after 96h of incubation, these compounds cause malformations in the thalle, conidiophore and conidia. These strains could be used as agents of biopreservation since have the ability to retard Aspergillus sp., growth in apricot juice with and without sugar conserved in refrigerator but not in bread.

Keywords: lactobacillus, antifungal substances, aspergillus, biopreservation

Procedia PDF Downloads 344
12330 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 76
12329 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro

Abstract:

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Keywords: cellulose acetate, hydrogel, biomaterial, cellular growth

Procedia PDF Downloads 193