Search results for: digital image watermarking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5199

Search results for: digital image watermarking

3849 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 730
3848 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses

Authors: Arjun Prakash, Samanvitha H.

Abstract:

BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.

Keywords: digital mammography, breast cancer, ultrasound, elastography

Procedia PDF Downloads 106
3847 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 532
3846 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 62
3845 Comparison Between a Droplet Digital PCR and Real Time PCR Method in Quantification of HBV DNA

Authors: Surangrat Srisurapanon, Chatchawal Wongjitrat, Navin Horthongkham, Ruengpung Sutthent

Abstract:

HBV infection causes a potential serious public health problem. The ability to detect the HBV DNA concentration is of the importance and improved continuously. By using quantitative Polymerase Chain Reaction (qPCR), several factors in standardized; source of material, calibration standard curve and PCR efficiency are inconsistent. Digital PCR (dPCR) is an alternative PCR-based technique for absolute quantification using Poisson's statistics without requiring a standard curve. Therefore, the aim of this study is to compare the data set of HBV DNA generated between dPCR and qPCR methods. All samples were quantified by Abbott’s real time PCR and 54 samples with 2 -6 log10 HBV DNA were selected for comparison with dPCR. Of these 54 samples, there were two outlier samples defined as negative by dPCR. Of these two, samples were defined as negative by dPCR, whereas 52 samples were positive by both the tests. The difference between the two assays was less than 0.25 log IU/mL in 24/52 samples (46%) of paired samples; less than 0.5 log IU/mL in 46/52 samples (88%) and less than 1 log in 50/52 samples (96%). The correlation coefficient was r=0.788 and P-value <0.0001. Comparison to qPCR, data generated by dPCR tend to be the overestimation in the sample with low HBV DNA concentration and underestimated in the sample with high viral load. The variation in DNA by dPCR measurement might be due to the pre-amplification bias, template. Moreover, a minor drawback of dPCR is the large quantity of DNA had to be used when compare to the qPCR. Since the technology is relatively new, the limitations of this assay will be improved.

Keywords: hepatitis B virus, real time PCR, digital PCR, DNA quantification

Procedia PDF Downloads 481
3844 Power System Cyber Security Risk in the Era of Digital Transformation

Authors: Rafat Rob, Khaled Alotaibi, Dana Nour, Abdullah Albadrani, Abdulmohsen Mulhim

Abstract:

Power systems digitization solutions provides a comprehensive smart, cohesive, interconnected network, extensive connectivity between digital assets, physical power plants, and resources to form digital economies. However, digitization has exposed the classical air gapped power plants to the rapid spread of cyber threats and attacks in the process delaying and forcing many organizations to rethink their cyber security policies and standards before they can augment their operation the new advanced digital devices. Cyber Security requirements for power systems (and industry control systems therein) demand a new approach, unique methodology, and design process that is completely different to Cyber Security measures designed for the IT systems. In practice, Cyber Security strategy, as applied to power systems, tends to be closely aligned to those measures applied for IT system purposes. The differentiator for Cyber Security in terms of power systems are the physical assets and applications used, alongside the ever-growing rate of expansion within the industry controls sector (in comparison to the relatively saturated growth observed for corporate IT systems). These factors increase the magnitude of the cyber security risk within such systems. The introduction of smart devices and sensors along the grid initiate vulnerable entry points to the systems. Every installed Smart Meter is a target; the way these devices communicate with each other may instigate a Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack. Attacking one sensor or meter has the potential to propagate itself throughout the power grid reaching the IT network, where it may manifest itself as a malware infiltration.

Keywords: supply chain, cybersecurity, maturity model, risk, smart grid

Procedia PDF Downloads 114
3843 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 313
3842 Homogenization of Culture and Its Effect on Preferred Reading of Media Communications Aimed at Members of Generation Z

Authors: Philip Katz

Abstract:

The research examines preferred reading of contemporary ads aimed at Generation Z through digital media. A qualitative analysis of focus groups consisting of members of Generation Z from 13 countries in Europe, the Middle East, South America and Asia has shown that, among this cohort, the influence of national culture does not create a strong impediment to understanding media communications targeting Generation Z. The familiarity of members of Generation Z with other countries’ popular culture through the spread of digital media has allowed a homogenizing effect and allowed a greater understanding of those cultures among this generation that lessens the impact of geographic separation.

Keywords: audience, Generation Z, marketing communication, preferred reading

Procedia PDF Downloads 177
3841 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)

Procedia PDF Downloads 353
3840 L2 Anxiety, Proficiency, and L2 Willingness to Communicate in the Classroom, Outside the Classroom, and in Digital Setting: Insights from Ethiopian Preparatory Schools

Authors: Merih Welay Welesilassie, Marianne Nikolov

Abstract:

Research into second and foreign language (L2) acquisitions has demonstrated that L2 anxiety, perceived proficiency, and L2 willingness to communicate (L2WTC) profoundly impact language learning outcomes. However, the complex interplay between these variables has yet to be fully explored, as these factors are dynamic and context-specific and can vary across different learners and learning environments. This study, therefore, utilized a cross-sectional quantitative survey research design to scrutinise the causal relationships between L2 anxiety, English proficiency, and L2WTC of 609 Ethiopian preparatory school students. The model for the L2WTC, both inside and outside the classroom, has been expanded to include an additional sub-scale known as the L2WTC in a digital setting. Moreover, in contrast to the commonly recognised debilitative-focused L2 anxiety, the construct of L2 anxiety has been divided into facilitative and debilitative anxiety. This method allows to measure not only the presence or absence of anxiety but also evaluate if anxiety helps or hinders the L2 learning experience. A self-assessment proficiency measure was also developed specifically for Ethiopian high school students. The study treated facilitative and debilitative anxiety as independent variables while considering self-assessed English proficiency and L2WTC in the classroom, outside the classroom, and in digital settings as dependent variables. Additionally, self-assessed English proficiency was used as an independent variable to predict L2WTC in these three settings. The proposed model, including these variables, was tested using structural equation modelling (SEM). According to the descriptive analysis, the mean scores of L2WTC in the three settings were generally low, ranging from 2.30 to 2.84. Debilitative anxiety casts a shadow on the positive aspects of anxiety. Self-assessed English proficiency was also too low. According to SEM, debilitative anxiety displayed a statistically significant negative impact on L2WTC inside the classroom, outside the classroom, in digital settings, and in self-assessed levels of English proficiency. In contrast, facilitative anxiety was found to positively contribute to L2WTC outside the classroom, in digital settings, and in self-assessed English proficiency. Self-assessed English proficiency made a statistically significant and positive contribution to L2WTC within the classroom, outside the classroom, and in digital contexts. L2WTC inside the classroom was found to positively contribute to L2WTC outside the classrooms and in digital contexts. The findings were systematically compared with existing studies, and the pedagogical implications, limitations, and potential avenues for future research were elucidated. The outcomes of the study have the potential to significantly contribute to the advancement of theoretical and empirical knowledge about improving English education, learning, and communication not only in Ethiopia but also in similar EFL contexts, thereby providing valuable insights for educators, researchers, and policymakers.

Keywords: debilitative anxiety, facilitative anxiety, L2 willingness to communicate, self-assessed English proficiency

Procedia PDF Downloads 14
3839 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 224
3838 Exploring Critical Thinking Skill Development in the 21st Century College Classroom: A Multi-Case Study

Authors: Kimberlyn Greene

Abstract:

Employers today expect college graduates to not only develop and demonstrate content-specific knowledge but also 21st century skillsets such as critical thinking. International assessments suggest students enrolled in United States (U.S.) educational institutions are underperforming in comparison to their global peers in areas such as critical thinking and technology. This multi-case study examined how undergraduate digital literacy courses at a four-year university in the U.S., as implemented by instructors, fostered students’ development of critical thinking skills. The conceptual framework for this study presumed that as students engaged in complex thinking within the context of a digital literacy course, their ability to deploy critical thinking was contingent upon whether the course was designed with the expectation for students to use critical thinking skills as well as the instructor’s approach to implementing the course. Qualitative data collected from instructor interviews, classroom observations, and course documents were analyzed with an emphasis on exploring the course design and instructional methods that provided opportunities to foster critical thinking skill development. Findings from the cross-case analysis revealed that although the digital literacy courses were designed and implemented with the expectation students would deploy critical thinking; there was no explicit support for students to develop these skills. The absence of intentional skill development resulted in inequitable opportunities for all students to engage in complex thinking. The implications of this study suggest that if critical thinking is to remain a priority, then universities must expand their support of pedagogical and instructional training for faculty regarding how to support students’ critical thinking skill development.

Keywords: critical thinking skill development, curriculum design, digital literacy, pedagogy

Procedia PDF Downloads 294
3837 Experiences of Online Opportunities and Risks: Examining Internet Use and Digital Literacy of Young People in Nigeria

Authors: Isah Yahaya Aliyu

Abstract:

Research on Internet use has often approached beneficial uses (online opportunities) of the Internet as separate from the risky encounters (online risks) of young people online. However, empirical evidence from diverse contexts appears to increasingly support the fusion of the two sets of online activities. Hence, the current research investigates the correlation between Internet use (IU) and digital literacy (DL) with online opportunities (OP) and risks (OR), using data from a Nigerian context, where there appears a paucity of research and literature on integrating opportunities and risks in the same study. A web-based data collection method was used to administer a survey to 335 undergraduate students in Northeastern Nigeria. Underpinned to Livingstone and Helsper model, findings are largely consistent with existing literature; IU and DL influence OP (R2 = 0.791, SE = 0.265, F-Stats = 626.566, P-value <.001), equally IU and DL influence OR as well (R2 = 0.343, SE = 0.465, F-Stats = 86.671, P-value <.001). OP and OR were found to strongly correlate positively (r = .667, n = 335, p < 0.01). This study has provided buttressing evidence from a Nigerian context of the fusion of benefits and risks of the Internet among young people. It has also upheld the argument for improved literacy as strategy for minimizing risks/harm rather than restricting use. Other theoretical and policy implications of the findings have been discussed in line with local and global debates about the Internet and its attendant effects.

Keywords: digital, internet, literacy, opportunities, risks

Procedia PDF Downloads 87
3836 Festivals and Weddings in India during Corona Pandemic

Authors: Arul Aram, Vishnu Priya, Monicka Karunanithi

Abstract:

In India, in particular, festivals are the occasions of celebrations. They create beautiful moments to cherish. Mostly, people pay a visit to their native places to celebrate with their loved ones. So are wedding celebrations. The Covid-19 pandemic came upon us unexpectedly, and to fight it, the festivals and weddings are celebrated unusually. Crowded places are deserted. Mass gatherings are avoided, changes and alterations are made in our rituals and celebrations. The warmth usually people have at their heart during any festival and wedding has disappeared. Some aspects of the celebrations become virtual/digital rather than real -- for instance, digital greetings/invitations, digital conduct of ceremonies by priests, YouTube worship, online/digital cash gifts, and digital audience for weddings. Each festival has different rituals which are followed with the divine nature in every family, but the pandemic warranted some compromises on the traditions. Likewise, a marriage is a beautiful bond between two families where a lot of traditional customs are followed. The wedding ceremonies are colorful and celebrations may extend for several days. People in India spend financial resources to prepare and celebrate weddings. The bride's and the groom's homes are fully decorated with colors, balloons and other decorations. The wedding rituals and celebrations vary by religion, region, preference and the resources of the groom, bride and their families. They can range from one day to multiple-days events. But the Covid-19 pandemic situation changes the mindset of people over ceremonies. This lockdown has affected those weddings and industries that support them and make the people postpone or at times advance without fanfare their 'big day.' People now adopt the protocols, guidelines and safety measures to reduce the risk and minimize the fear during celebrations. The study shall look into: how the pandemic shattered the expectations of people celebrating; problems faced economically by people/service providers who are benefited by the celebrations; and identify the alterations made in the rituals or the practices of our culture for the safety of families. The study shall employ questionnaires, interviews and visual ethnography to collect data. The study found that during a complete lockdown, people have not bought new clothes, sweets, or snacks, as they generally do before a pandemic. Almost all of them kept their celebrations low-key, and some did not celebrate at all. Digital media played a role in keeping the celebration alive, as people used it to wish their friends and families virtually. During partial unlock, the situation was under control, and people began to go out and see a few family and friends. They went shopping and bought new clothes and needs, but they did it while following safety precautions. There is also an equal percentage of people who shopped online. Although people continue to remain disappointed, they were less stressed up as life was returning to normal.

Keywords: covid-19, digital, festivals, India, wedding

Procedia PDF Downloads 186
3835 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 265
3834 The Reality of the Digital Inequality and Its Negative Impact on Virtual Learning during the COVID-19 Pandemic: The South African Perspective

Authors: Jacob Medupe

Abstract:

Life as we know it has changed since the global outbreak of Coronavirus Disease 2019 (COVID-19) and business as usual will not continue. The human impact of the COVID-19 crisis is already immeasurable. Moreover, COVID-19 has already negatively impacted economies, livelihoods and disrupted food systems around the world. The disruptive nature of the Corona virus has affected every sphere of life including the culture and teaching and learning. Right now the majority of education research is based around classroom management techniques that are no longer necessary with digital delivery. Instead there is a great need for new data about how to make the best use of the one-on-one attention that is now becoming possible (Diamandis & Kotler, 2014). The COVID-19 pandemic has necessitated an environment where the South African learners are focused to adhere to social distancing in order to minimise the wild spread of the Corona virus. This arrangement forces the student to utilise the online classroom technologies to continue with the lessons. The historical reality is that the country has not made much strides on the closing of the digital divide and this is particularly a common status quo in the deep rural areas. This will prove to be a toll order for most of the learners affected by the Corona Virus to be able to have a seamless access to the online learning facilities. The paper will seek to look deeply into this reality and how the Corona virus has brought us to the reality that South Africa remains a deeply unequal society in every sphere of life. The study will also explore the state of readiness for education system around the online classroom environment.

Keywords: virtual learning, virtual classroom, COVID-19, Corona virus, internet connectivity, blended learning, online learning, distance education, e-learning, self-regulated Learning, pedagogy, digital literacy

Procedia PDF Downloads 127
3833 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
3832 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.

Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture

Procedia PDF Downloads 194
3831 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques

Authors: Mei-Yi Wu, Shang-Ming Huang

Abstract:

The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.

Keywords: mobile image retrieval, text mining, product information service system, online marketing

Procedia PDF Downloads 359
3830 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
3829 The Use of Knowledge Management Systems and Information Communication Technology Service Desk Management to Minimize the Digital Divide Experienced in the Museum Sector

Authors: Ruel A. Welch

Abstract:

Since the introduction of ServiceNow, the UK’s Science Museum Group’s (SMG) ICT service desk portal. There has not been an analysis of the tools available to SMG staff for just-in-time knowledge acquisition (knowledge management systems) and reporting ICT incidents with a focus on an aspect of professional identity, namely, gender. This study is conducted in the milieu of UK museums, galleries, arts, academic, charitable, and cultural heritage sectors. Numerous authors suggest that males and females experience ICT usage differently. Therefore, it is important for SMG to investigate the apparent disparities so that solutions can be derived to minimize this digital divide if one exists. It is acknowledged at SMG that there are challenges with keeping up with an ever-changing digital landscape. Subsequently, this entails the rapid upskilling of staff and developing an infrastructure that supports just-in-time technological knowledge acquisition and reporting technology-related issues. This problem was addressed by analyzing ServiceNow ICT incident reports and reports from knowledge articles from a six-month period from February to July. This study found a statistically significant relationship between gender and reporting an ICT incident. There is also a significant relationship between gender and the priority level of ICT incidents. Interestingly, there is no statistically significant relationship between gender and reading knowledge articles. Additionally, there is no statistically significant relationship between gender and reporting an ICT incident related to the knowledge article that was read by staff. The knowledge acquired from this study is useful to service desk management practice as it will help to inform the creation of future knowledge articles and ICT incident reporting processes.

Keywords: digital divide, ICT service desk practice, knowledge management systems, workplace learning

Procedia PDF Downloads 126
3828 A Review of Evidence on the Use of Digital Healthcare Interventions to Provide Follow-Up Care for Coeliac Disease Patients

Authors: R. Cooper, M. Kurien

Abstract:

Background: Coeliac Disease affects around 1 in 100 people. Untreated, it can result in serious morbidity such as malabsorption and cancers. The only treatment is to adhere to a gluten free diet (GFD). International guidelines recommend that people with the coeliac disease receive follow-up healthcare annually to detect complications early and support their adherence to a GFD. However, there is a finite amount of healthcare in the UK, and as such, not all patients receive follow-up care as recommended by the guidelines. Furthermore, there is an increasing number of patients being diagnosed with coeliac disease. Given the potential severe morbidity that non-adherence to a GFD could result in, alongside reports that the rate of non- GFD adherence could be as high as 91%, it is imperative that action is taken. One potential solution to this would be to provide follow-up care digitally through utilising technology. This abstract reports on a rapid review undertaken to explore the existing evidence in this area. Methods: In June 2020, 11 bibliographic databases were searched to find any pertinent studies. The inclusion criteria required the study to be written in the English language and report on the use of digital healthcare interventions for people with Coeliac Disease. Results: A small amount of evidence (n=8) was found which met our inclusion criteria and pertained to the provision of CD follow-up digitally. These studies focussed either on educating and supporting patients to adhere to a GFD or providing consultation remotely with a focus on detecting complications early. These studies showed that there is potential for digital healthcare interventions to positively impact people with coeliac disease. However, it is suggested that the effectiveness of these interventions may depend on local circumstances, individual knowledge of CD and general attitudes. Conclusion: The above studies suggest that providing follow-up care digitally may offer a potential solution; however, the evidence about how this should be done and in what circumstances this will work for individuals is scarce. In the light of the COVID-19 pandemic, the introduction of digital healthcare interventions appears to be highly topical, and as such, this review may benefit from being refreshed in the future.

Keywords: coeliac disease, follow-up, gluten free diet, digital healthcare interventions

Procedia PDF Downloads 175
3827 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 279
3826 Navigating the Digital Landscape: An Ethnographic Content Analysis of Black Youth's Encounters with Racially Traumatic Content on Social Media

Authors: Tiera Tanksley, Amanda M. McLeroy

Abstract:

The advent of technology and social media has ushered in a new era of communication, providing platforms for news dissemination and cause advocacy. However, this digital landscape has also exposed a distressing phenomenon termed "Black death," or trauma porn. This paper delves into the profound effects of repeated exposure to traumatic content on Black youth via social media, exploring the psychological impacts and potential reinforcing of stereotypes. Employing Critical Race Technology Theory (CRTT), the study sheds light on algorithmic anti-blackness and its influence on Black youth's lives and educational experiences. Through ethnographic content analysis, the research investigates common manifestations of Black death encountered online by Black adolescents. Findings unveil distressing viral videos, traumatic images, racial slurs, and hate speech, perpetuating stereotypes. However, amidst the distress, the study identifies narratives of activism and social justice on social media platforms, empowering Black youth to engage in positive change. Coping mechanisms and community support emerge as significant factors in navigating the digital landscape. The study underscores the need for comprehensive interventions and policies informed by evidence-based research. By addressing algorithmic anti-blackness and promoting digital resilience, the paper advocates for a more empathetic and inclusive online environment. Understanding coping mechanisms and community support becomes imperative for fostering mental well-being among Black adolescents navigating social media. In education, the implications are substantial. Acknowledging the impact of Black death content, educators play a pivotal role in promoting media literacy and digital resilience. Creating inclusive and safe online spaces, educators can mitigate negative effects and encourage open discussions about traumatic content. The application of CRTT in educational technology emphasizes dismantling systemic biases and promoting equity. In conclusion, this study calls for educators to be cognizant of the impact of Black death content on social media. By prioritizing media literacy, fostering digital resilience, and advocating for unbiased technologies, educators contribute to an inclusive and just educational environment for all students, irrespective of their race or background. Addressing challenges related to Black death content proactively ensures the well-being and mental health of Black adolescents, fostering an empathetic and inclusive digital space.

Keywords: algorithmic anti-Blackness, digital resilience, media literacy, traumatic content

Procedia PDF Downloads 56
3825 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 357
3824 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 460
3823 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
3822 Pros and Cons of Distance Learning in Europe and Perspective for the Future

Authors: Aleksandra Ristic

Abstract:

The Coronavirus Disease – 2019 hit Europe in February 2020, and infections took place in four waves. It left consequences and demanded changes for the future. More than half of European countries responded quickly by declaring a state of emergency and introducing various containment measures that have had a major impact on individuals’ lives in recent years. Closing public lives was largely achieved by limited access and/or closing public institutions and services, including the closure of educational institutions. Teaching in classrooms converted to distance learning. In the research, we used a quantitative study to analyze various factors of distance learning that influenced pupils in different segments: teachers’ availability, family support, entire online conference learning, successful distance learning, time for themselves, reliable sources, teachers’ feedback, successful distance learning, online participation classes, motivation and teachers’ communication and theoretical review of the importance of digital skills, e-learning Index, World comparison of e-learning in the past, digital education plans for the field of Europe. We have gathered recommendations and distance learning solutions to improve the learning process by strengthening teachers and creating more tiered strategies for setting and achieving learning goals by the children.

Keywords: availability, digital skills, distance learning, resources

Procedia PDF Downloads 102
3821 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom

Authors: Chih-Ping Chang

Abstract:

Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.

Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner

Procedia PDF Downloads 290
3820 Leveraging NFT Secure and Decentralized Lending: A Defi Solution

Authors: Chandan M. S., Darshan G. A., Vyshnavi, Abhishek T.

Abstract:

In the evolving world of technology and digital assets, non-fungible tokens (NFTs) have emerged as the latest advancement. These digital assets represent ownership of intangible items and hold significant value. Unlike cryptocurrencies, like Ethereum or Bitcoin, NFTs cannot be exchanged due to their nature. Each NFT has an indivisible value. NFTs not only pave the way for financial services but also open up fresh opportunities for creators, buyers and artists. To revolutionize financing in the DeFi space, this proposed approach utilizes NFTs generated from digital arts. By eliminating intermediaries, this innovative method ensures trust and security in transactions. The idea entails automating borrower-lender interactions through contracts while securely storing data using blockchain technology. Borrowers can obtain funding by leveraging assets such as estate, artwork and collectibles that are often illiquid. The key component of this system is contracts that independently execute lending agreements and collateral transfers within predefined parameters. By leveraging the Ethereum blockchain, this project aims to provide consumers with access to a platform offering a wide range of financial services. The demonstration illustrates how NFT lending and borrowing is managed through contracts, providing a secure and trustworthy transaction environment.

Keywords: blockchain, defi, NFT, ethereum, marketplace

Procedia PDF Downloads 53