Search results for: climatic zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1678

Search results for: climatic zones

328 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 177
327 The Interaction of Climate Change and Human Health in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta

Abstract:

The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.

Keywords: heat waves, Italy, local warming, temperature

Procedia PDF Downloads 243
326 Geological, Engineering Geological, and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawarah, KSA

Authors: Mutasim A. M. Ez Eldin, Tareq Saeid Al Zahrani, Gabel Zamil Al-Barakati, Ibrahim Mohamed AlHarthi, Marwan Mohamed Al Saikhan, Waleed Abdel Aziz Al Aklouk, Waheed Mohamed Saeid Ba Amer

Abstract:

The Knowledge Economic City (KEC) of Al Madinah Al Munawarah is one of the major projects and represents a cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Tests (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to moderately (W3) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO₄²⁻) and chloride (Cl⁻) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be taken into consideration.

Keywords: engineering geology, KEC, petrographic description, rock and soil investigations

Procedia PDF Downloads 83
325 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 371
324 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 73
323 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 549
322 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 22
321 Effluent from Royal LERD Wastewater Treatment Systems to Furnish Nutrients for Phytoplankton to Generate the Abundance of Hard Clam (Meretrix spp.) on Muddy Beach

Authors: O. Phewnil, S. Khowhit, W. Inkapatanakul, A. Boutson, K. Chunkao, O. Chueawong, T. Pattamapitoon, N. Chanwong, C. Nimpee

Abstract:

The King’s Royally Initiated Laem Phak Bia Environmental Research and Development Project (“the Royal LERD Project”) is located in Laem Phak Bia Sub-District, Ban Laem District, Phetchaburi Province, Thailand. Phetchaburi municipal wastewater was treated with a simple technology by using aquatic plants, constructed wetland, oxidation ponds through a nature-by-nature process. The effluent from the Royal LERD Project was discharged into Laem Phak Bia muddy beach. The soil sediment samples were collected from two zones (200 and 600 meters from the coast of the beach), and tested for cation-exchange capacity (CEC), pH and organic matter and soil particles content. The marine water samples were also collected from the beach in wet and dry seasons and analyzed for its quality and compositions, including but not limited to, biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), nutrients, heavy metals (As, Cd, Cr, Hg, and Pb), and phytoplankton at high and low tides. The soil texture was sandy loam with high concentration of calcium and magnesium which showed a property of base (pH 8). The marine water was qualified with the standard limits of coastal water quality. A dominant species was Coscinodiscus sp. It was found approximately 70.46% of total phytoplankton species in Meretrix casta gastrointestinal tract. The concentration of the heavy metals (As, Cd, Cr, Hg, Ni and Pb) in the tissues and water content of two species of hard clams indicated that heavy metals in Meretrix casta were higher than those in Meretrix meretrix. However, the heavy metals in both species were under the standard limits and safe for consumption. It can be concluded that nutrients in effluent from the wastewater treatment systems play important role in promoting the growth of phytoplankton and generating abundance of hard clams on muddy beach.

Keywords: wastewater, phytoplankton, hard clam (Meretrix spp.), muddy beach

Procedia PDF Downloads 307
320 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study

Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili

Abstract:

This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.

Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement

Procedia PDF Downloads 41
319 Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters

Authors: Ebere Christian Ugochukwu, Okafor Josephine, Oyawoye Tomisin

Abstract:

The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production.

Keywords: antimicrobials, susceptibility, minimum inhibitory concentration, extracts

Procedia PDF Downloads 29
318 Global Climate Change and Insect Pollinators

Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Muhammad Ibrahim Shahid, Muhammad Ashfaq

Abstract:

The foundation of human life on earth relies on many ecosystem services provided by insects of which pollination owes a vital role. The pollination service offered by insects has annual worth of approximately €153 billion. The majority of the flowering plants depends on entomophiles pollination for their reproduction and formation of seeds and fruits. The quantity and quality of insect pollination have multiple implications for stable ecosystem, diverse species level, food security and climate change resilience. The rapidly mounting human population, depletion of natural resources and the global climate change forced us to enter an era of pollination crisis. Climate change not only alters the phenology, population abundance and geographic ranges of different pollinators but also hinders their pollination activities. The successful pollination process relies heavily on the synchronization of biological events of pollinators with the phenological stages of the flowering plants. However, there are possibilities that impending climatic changes may result in asynchrony between plant-pollinators interactions and also mitigate the extent of pollination. The trophic mismatch mostly occurs when pollinators and plants inhabiting the same environment use different environmental cues to regulate their biological events, as these cues are not equally affected by climate change. Synchrony has also been disrupted when one of the interacting species has migratory nature and depend on cues for migration. Moreover, irregular rainfalls and up-surging temperature also disrupts the foraging behaviour of pollinators resulting in reduced flowers visits by insect. Climate change has a direct impact on the behavior and physiology of honey bees, the best known pollinators owing to their extreme floral fidelity. Rising temperature not only alleviates the quantity and quality of floral environment but also alters the bee’s colony harvesting and development ability. Furthermore, a possible earlier decline of flowers is expected in a growing season due to this rising temperature. This may also lead to disrupt the efficiency bumblebee queen that require a constant and adequate nectar and pollen supply throughout the entire growing season for healthy colony production. Considering the role of insect pollination in our ecosystem, their associated risks regarding climate change should be addressed properly for devising a well-focused research needed for their conservation.

Keywords: climate change, phenological, pollination, synchronization

Procedia PDF Downloads 218
317 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach

Authors: Bernard Kumi-Boateng, Issaka Yakubu

Abstract:

Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.

Keywords: forest, GIS, remote sensing, Goaso

Procedia PDF Downloads 457
316 Study of the Design and Simulation Work for an Artificial Heart

Authors: Mohammed Eltayeb Salih Elamin

Abstract:

This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation.

Keywords: Artificial heart, computational fluid dynamic heart chamber, design, pump

Procedia PDF Downloads 459
315 Broadening the Public Sphere: Examining the Role of Community Radio in Fostering Participatory Democracy in Selected Communities in Ondo State, Nigeria

Authors: John Ibanga

Abstract:

Since May 1999, when Nigeria returned to uninterrupted democratic rule, there have been various attempts by successive governments at committing themselves to democratic ideals. Such efforts include a revision of communication policies after repeated calls by civil society organisations, development partners, researchers, and academics to allow not only the commencement of campus radio broadcasting but also the takeoff of community radio broadcasting. Thus, in 2015, operating licenses were granted to several communities spread across the six geopolitical zones in the country for the establishment of community radio stations culminating in the establishment of the first community radio in Nigeria on July 17, 2015. And, since citizens’ involvement in policy matters and governance is one of the tenets of participatory democracy, it becomes imperative to investigate how the emerging community radio sector in Nigeria is facilitating participatory democracy among Nigerians, even in the face of attempts by the present government to silence all dissenting voices. This study, therefore, examines how residents in Ondo State, Southwest Nigeria, are utilising programmes on Ejule Nen and Kakaaki community radio stations in Ondo State, Nigeria, to deepen participatory democracy. Much of the existing studies on the role of community radio in participatory democracy and citizens' engagement efforts miss out on Nigeria because of the delayed implementation of community radio policy in Nigeria being Africa’s most populous nation as well as a major player in the affairs of the African continent. While the participatory communication and communication infrastructure theories were used as framework, data were collected from in-depth interviews with staff of the community radio station and community leaders, focus group discussions with the community residents, and qualitative content analysis of programmes on the station. The residents used the community radio stations as platforms for demanding accountability from government, mobilising resources for the execution of a number of community projects, promoting credible electoral practices, and influencing the implementation of free education policy in their communities. Hence the community radio stations became the reliable and authoritative voices of residents for participating in the public sphere and, generally, the democratic process.

Keywords: community, community radio, democracy, participatory democracy

Procedia PDF Downloads 122
314 Risk-taking and Avoidance Decisions in Pandemic Agriculture in Georgia

Authors: Nino Damenia

Abstract:

The paper discusses the risks arising in agriculture in Georgia, the possibilities of their acceptance and prevention, the threat created by the pandemic crisis, and the state programs for overcoming them. The share of agriculture in the country's GDP is 8.3%. Over the past five years, Georgia has imported $ 5.9 billion worth of agri-food products. Despite these figures, agriculture has become an important sector for the Georgian government since 2012, as evidenced by the more than 1.5 billion GEL spent from the 2012-2020 budget for agricultural development. Any field of agriculture, be it poultry, livestock, cereals, fruits, or vegetables, is very sensitive to various climatic and viral risks. Avoiding these risks requires additional investment. It is noteworthy that small farms are mainly affected by the risks, while relatively large farms face fewer problems because they are relatively prepared to face the problems and can avoid them more easily. An example of viral risk in the article is the export of hazelnuts, which has quite a lot of potential. Due to the spoilage of the crop caused by Brown Marmorated Stink Bug (BMSB), hazelnut exports have declined considerably over the years. If the volume of hazelnuts exported in 2016 was 179 378 thousand USD, due to the deficit caused by Brown Marmorated Stink Bug (BMSB) in 2018, it became 57 124 thousand USD. And after the situation was relatively settled, hazelnut seedlings were poisoned. By 2020, this figure improved to 91,088 thousand US dollars. The development of the agricultural sector and the reduction of risks require technological development, investor interest, and even more state support to enable more small farms to have the potential for greater production and sustainable development. The aim of the study is to identify the risks arising in the agricultural sector of Georgia before and after the pandemic, to evaluate them, compare them with the agriculture of some European countries, and to develop the necessary recommendations to avoid the emerging risks. The research uses methods of analysis and synthesis, observation, induction, deduction, and analysis of statistics. The paper is based on both Georgian and foreign scientific research, as well as state-published documentation on agricultural assistance programs. The research is based on the analysis of data published by the European Statistics Office, the National Statistics Office of Georgia, and many other organizations. The results of the study and the recommendations will help reduce the risks in agriculture in Georgia and, in general, to identify the existing potential and the development of the sector as a whole.

Keywords: risk, agriculture, pandemi, brown marmorated stink bug (BMSB)

Procedia PDF Downloads 120
313 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait

Authors: Obaid AlOtaibi, Salman Hussain

Abstract:

Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.

Keywords: Kuwait, renewable energy, spatial analysis, wind energy

Procedia PDF Downloads 147
312 Exploring the Rhinoceros Beetles of a Tropical Forest of Eastern Himalayas

Authors: Subhankar Kumar Sarkar

Abstract:

Beetles of the subfamily Dynastinae under the family Scarabaeidae of the insect order Coleoptera are popularly known as ‘Rhinoceros beetles’ because of the characteristic horn borne by the males on their head. These horns are dedicated in mating battle against other males and have evolved as a result of phenotypic plasticity. Scarabaeidae is the largest of all families under Coleoptera and is composed of 11 subfamilies, of which the subfamily Dynastinae is represented by approximately 300 species. Some of these beetles have been reported to cause considerable damage to agriculture and forestry both in their larval and adult stages, while many of them are beneficial as they pollinate plants and recycle plant materials. Eastern Himalayas is regarded as one of the 35 biodiversity hotspot zones of the world and one of the four of India, which is exhibited by its rich and megadiverse tropical forests. However, our knowledge on the faunal diversity of these forests is very limited, particularly for the insect fauna. One such tropical forest of Eastern Himalayas is the ‘Buxa Tiger Reserve’ located between latitudes 26°30” to 26°55” North and Longitudes 89°20” to 89˚35” East of India and occupies an area of about 759.26 square kilometers. It is with this background an attempt has been made to explore the insect fauna of the forest. Insect sampling was carried out in each beat and range of Buxa Tiger Reserve in all the three seasons viz, Premonsoon, Monsoon, and Postmonsoon. Sample collections were done by sweep nets, hand picking technique and pit fall traps. UV light trap was used to collect the nocturnal insects. Morphological examinations of the collected samples were carried out with Stereozoom Binocular Microscopes (Zeiss SV6 and SV11) and were identified up to species level with the aid of relevant literature. Survey of the insect fauna of the forest resulted in the recognition of 76 scarab species, of which 8 belong to the subfamily dealt herein. Each of the 8 species represents a separate genus. The forest is dominated by the members of Xylotrupes gideon (Linnaeus) as is represented by highest number of individuals. The recorded taxa show about 12% endemism and are of mainly oriental in distribution. Premonsoon is the most favorable season for their occurrence and activity followed by Monsoon and Postmonsoon.

Keywords: Dynastinae, Scarabaeidae, diversity, Buxa Tiger Reserve

Procedia PDF Downloads 189
311 Drying Shrinkage of Concrete: Scale Effect and Influence of Reinforcement

Authors: Qier Wu, Issam Takla, Thomas Rougelot, Nicolas Burlion

Abstract:

In the framework of French underground disposal of intermediate level radioactive wastes, concrete is widely used as a construction material for containers and tunnels. Drying shrinkage is one of the most disadvantageous phenomena of concrete structures. Cracks generated by differential shrinkage could impair the mechanical behavior, increase the permeability of concrete and act as a preferential path for aggressive species, hence leading to an overall decrease in durability and serviceability. It is of great interest to understand the drying shrinkage phenomenon in order to predict and even to control the strains of concrete. The question is whether the results obtained from laboratory samples are in accordance with the measurements on a real structure. Another question concerns the influence of reinforcement on drying shrinkage of concrete. As part of a global project with Andra (French National Radioactive Waste Management Agency), the present study aims to experimentally investigate the scale effect as well as the influence of reinforcement on the development of drying shrinkage of two high performance concretes (based on CEM I and CEM V cements, according to European standards). Various sizes of samples are chosen, from ordinary laboratory specimens up to real-scale specimens: prismatic specimens with different volume-to-surface (V/S) ratios, thin slices (thickness of 2 mm), cylinders with different sizes (37 and 160 mm in diameter), hollow cylinders, cylindrical columns (height of 1000 mm) and square columns (320×320×1000 mm). The square columns have been manufactured with different reinforcement rates and can be considered as mini-structures, to approximate the behavior of a real voussoir from the waste disposal facility. All the samples are kept, in a first stage, at 20°C and 50% of relative humidity (initial conditions in the tunnel) in a specific climatic chamber developed by the Laboratory of Mechanics of Lille. The mass evolution and the drying shrinkage are monitored regularly. The obtained results show that the specimen size has a great impact on water loss and drying shrinkage of concrete. The specimens with a smaller V/S ratio and a smaller size have a bigger drying shrinkage. The correlation between mass variation and drying shrinkage follows the same tendency for all specimens in spite of the size difference. However, the influence of reinforcement rate on drying shrinkage is not clear based on the present results. The second stage of conservation (50°C and 30% of relative humidity) could give additional results on these influences.

Keywords: concrete, drying shrinkage, mass evolution, reinforcement, scale effect

Procedia PDF Downloads 183
310 Electrical Geophysical and Physiochemical Assessment of the Impact of Environmental Pollution on the Groundwater Potential of a Waste Land fill at Tudun Murtala in Nassarawa Local Government Area, Kano State, Nigeria

Authors: Abubakar Maitama Yusuf Hotoro, Olokpo Israel Olofu, Yusuf U. Tarauni, Mudassir A. Umar, Aliyu A, Dahiru Garba Diso, Usman H. Jamoh, M. Sale

Abstract:

The study assessed the impact of environmental pollution on groundwater potential at Tudun Murtala waste land fill using electrical resistivity, induced polarization and Physiochemical methods. The study area is located between latitude 12.023678N and longitude 8.573676 E. Geophysical data were collected at maximum length of 140m along twelve profiles using ABEM Terrameter SAS 1000. Results from the Geophysical analysis showed that the profiles were underlain by three lithological layers; the top layer consisting of Loamy and Sand soils, alluvium, granite, shale and sandstone. The second and third layers were predominantly made of weathered and fractured basements respectively. The potential groundwater water bearing zones of the study area occurred at VES2, VES4, VES5, VES6 and VES7. The thicknesses of the sounding points were found to be 20.8m at VES2; 25.2m at VES4; 13.2m at VES5; 50.8m at VES6 and 13.3m at VES7. The corresponding depths for the sounding points were 20.8m at VES2; 27.9m at VES4; 26.7m at VES5; 51.6m at VES6 and 24.9m at VES7 respectively. The Physiochemical study of selected groundwater samples assessed parameters such as the Electrical Conductivity, EC (288dS/m to 1365dS/m), TDS (170.8mg/L to 820mg/L) Pb (0.546mg/l to 0.629mg/l), Cu (-0.001mg/l to 0.004mg/l), and Cd (0.031mg/l to 0.092mg/l). The physiochemical results showed that the groundwater around the dumpsite may have been contaminated, especially in Dumpsite Hole 1 and Hole 2 at VES4 and VES6 respectively. There are indications for suspected leachate mitigation around the two VES points. Even though, the pH values of 6.4 and 6.2 at the two sounding points were considered to be within the permissible pH range (6.5 to 6.8). The values of other elements present in the groundwater for the samples at other VES points were found to be above permissible WHO and Nigerian Standards for Drinking Water.

Keywords: resistivity induced polarization, chargeability, landfill, leachate, contamination

Procedia PDF Downloads 62
309 Contemporary Changes in Agricultural Land Use in Central and Eastern Europe: Direction and Conditions

Authors: Jerzy Bański

Abstract:

Central and Eastern European agriculture is characterized by large spatial variations in the structure of agricultural land and the structure of crops on arable land. In general, field crops predominate among the land used for agriculture. In the southern part of the study area, permanent crops have a relatively large share, which is due to favorable climatic conditions. Clear differences between the north and south of the region concern the structure of crop cultivation. In the north, the cultivation of cereals, mainly wheat, definitely prevails. In the south of the region, on the other hand, the structure of crops is more diverse, as more industrial crops are grown in addition to cereals. The primary cognitive objective of the study is to diagnose and identify the directions of changes in the structure of agricultural land use in the CEE region. Particular attention was paid to the spatial differentiation of this structure and its importance in its formation of various conditions. The analysis included the basic elements of the structure of agricultural land use and the structure of crops on arable land. The decrease in the area of arable land is characteristic of the entire region and is the result of the territorial growth of cities, the development of communications infrastructure (rail and road), and the increase in the rationality of crop production involving, among other things, the exclusion from the cultivation of land with the lowest agro-ecological values and their afforestation. It can be summarized that the directions of changes in the basic categories of agricultural land are related to agro-ecological conditions, which indicates an increase in the rationality of crop production. In countries with lower-quality of agricultural production space, the share of grassland generally increased, while in countries with favorable conditions -mainly soil- the share of arable land increased. As for the structure of field crops, the direction of its changes seems to be mainly due to economic and social reasons. Ownership changes shaping an unfavorable agrarian structure (fragmentation and fragmentation of arable fields) and the process of aging of the rural population resulted in the abandonment of resource- and labor-intensive crops. As a result, the importance of growing fruits and vegetables, and potatoes has declined. The structure of vegetable crops has been greatly influenced by the accession of Central and Eastern European countries to the European Union. This is primarily the increase in the importance of oil crops (rapeseed and sunflower) related to biofuel production. In the case of cereal crops, the main direction of change was the increase in the share of wheat at the expense of other cereal species.

Keywords: agriculture, land use, Central and Eastern Europe, crops, arable land

Procedia PDF Downloads 73
308 Liquid Unloading of Wells with Scaled Perforation via Batch Foamers

Authors: Erwin Chan, Aravind Subramaniyan, Siti Abdullah Fatehah, Steve Lian Kuling

Abstract:

Foam assisted lift technology is proven across the industry to provide efficient deliquification in gas wells. Such deliquification is typically achieved by delivering the foamer chemical downhole via capillary strings. In highly liquid loaded wells where capillary strings are not readily available, foamer can be delivered via batch injection or bull-heading. The latter techniques differ from the former in that cap strings allow for liquid to be unloaded continuously, whereas foamer batches require that periodic batching be conducted for the liquid to be unloaded. Although batch injection allows for liquid to be unloaded in wells with suitable water to gas (WGR) ratio and condensate to gas (CGR) ratio without well intervention for capillary string installation, this technique comes with its own set of challenges - for foamer to de-liquify liquids, the chemical needs to reach perforation locations where gas bubbling is observed. In highly scaled perforation zones in certain wells, foamer delivered in batches is unable to reach the gas bubbling zone, thus achieving poor lift efficiency. This paper aims to discuss the techniques and challenges for unloading liquid via batch injection in scaled perforation wells X and Y, whose WGR is 6bbl/MMscf, whose scale build-up is observed at the bottom of perforation interval, whose water column is 400 feet, and whose ‘bubbling zone’ is less than 100 feet. Variables such as foamer Z dosage, batching technique, and well flow control valve opening times are manipulated during the duration of the trial to achieve maximum liquid unloading and gas rates. During the field trial, the team has found optimal values between the three aforementioned parameters for best unloading results, in which each cycle’s gas and liquid rates are compared with baselines with similar flowing tubing head pressures (FTHP). It is discovered that amongst other factors, a good agitation technique is a primary determinant for efficient liquid unloading. An average increment of 2MMscf/d against an average production of 4MMscf/d at stable FTHP is recorded during the trial.

Keywords: foam, foamer, gas lift, liquid unloading, scale, batch injection

Procedia PDF Downloads 184
307 Outwrestling Cataclysmic Tsunamis at Hilo, Hawaii: Using Technical Developments of the past 50 Years to Improve Performance

Authors: Mark White

Abstract:

The best practices for owners and urban planners to manage tsunami risk have evolved during the last fifty years, and related technical advances have created opportunities for them to obtain better performance than in earlier cataclysmic tsunami inundations. This basic pattern is illustrated at Hilo Bay, the waterfront area of Hilo, Hawaii, an urban seaport which faces the most severe tsunami hazard of the Hawaiian archipelago. Since April 1, 1946, Hilo Bay has endured tsunami waves with a maximum water height exceeding 2.5 meters following four severe earthquakes: Unimak Island (Mw 8.6, 6.1 m) in 1946; Valdiva (Mw 9.5, the largest earthquake of the 20th century, 10.6 m) in 1960; William Prince Sound (Mw 9.2, 3.8 m) in 1964; and Kalapana (Mw 7.7, the largest earthquake in Hawaii since 1868, 2.6 m) in 1975. Ignoring numerous smaller tsunamis during the same time frame, these four cataclysmic tsunamis have caused property losses in Hilo to exceed $1.25 billion and more than 150 deaths. It is reasonable to foresee another cataclysmic tsunami inundating the urban core of Hilo in the next 50 years, which, if unchecked, could cause additional deaths and losses in the hundreds of millions of dollars. Urban planners and individual owners are now in a position to reduce these losses in the next foreseeable tsunami that generates maximum water heights between 2.5 and 10 meters in Hilo Bay. Since 1946, Hilo planners and individual owners have already created buffer zones between the shoreline and its historic downtown area. As these stakeholders make inevitable improvements to the built environment along and adjacent to the shoreline, they should incorporate new methods for better managing the obvious tsunami risk at Hilo. At the planning level, new manmade land forms, such as tsunami parks and inundation reservoirs, should be developed. Individual owners should require their design professionals to include sacrificial seismic and tsunami fuses that will perform well in foreseeable severe events and that can be easily repaired in the immediate aftermath. These investments before the next cataclysmic tsunami at Hilo will yield substantial reductions in property losses and fatalities.

Keywords: hilo, tsunami parks, reservoirs, fuse systems, risk managment

Procedia PDF Downloads 165
306 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 131
305 A Pathway to Sustainable Agriculture through Protection and Propagation of Indigenous Livestock Breeds of Pakistan-Cholistani Cattle as a Case Study

Authors: Umer Farooq

Abstract:

The present work is being presented with a general aim of highlighting the role of protection/propagation of indigenous breeds of livestock in an area as a sustainable tool for poverty alleviation. Specifically, the aim is to introduce a formerly neglected Cholistani breed of cattle being reared by the Cholistani desert nomads of Pakistan. The said work will present a detaile account of research work conducted during the last five years by the author. Furthermore, it will present the performance (productive and reproductive traits) of this breed as being reared under various nomadic systems of the desert. Results will be deducted on the basis of the research work conducted on Cholistani cattle and keeping abreast the latest reforms being provided by the Food and Agriculture Organization (FAO) and World Initiative to Support Pastoralism (WISP) of the UN. The timely attention towards the protection and propagation of this neglected breed of cattle will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems such as Pakistan. The 15 recognized indigenous breeds of cattle constitute 43% of the total livestock population in Pakistan and belong to Zebu cattle. These precious breeds are currently under threat and might disappear even before proper documentation until and unless streamlined efforts are diverted towards them. This horrific state is due to many factors such as epidemic diseases, urbanization, indiscriminate crossing with native stock, misdirected cross breeding with exotic stock/semen, inclined livestock systems from extensive (subsistence) to intensive (commercial), lack of valuation of local breeds, decreasing natural resources, environmental degradation and global warming. Hefty work has been documented on many aspects of Sahiwal and Red Sindhi breeds of cattle in their respective local climates which have rightly gained them an international fame as being the vital tropical milk breeds of Pakistan. However, many other indigenous livestock breeds such as Cholistani cattle being reared under pastoral systems of Cholistan are yet unexplored. The productive and reproductive traits under their local climatic conditions need to be studied and the future researches may be streamlined to manipulate their indigenous potential. The timely attention will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems.

Keywords: Cholistan desert, Pakistan, indigenous cattle, Sahiwal cattle, pastoralism

Procedia PDF Downloads 556
304 Characterization of a Broad Range Antimicrobial Substance from Pseudozyma aphidis

Authors: Raviv Harris, Maggie Levy

Abstract:

Natural product-based pesticides may serve as an alternative to the traditional synthetic pesticides, which have a potentially damaging effect, both to human health and for the environment. Along with plants, microorganisms are a prospective source of such biological pesticides. A unique and active strain of P. aphidis (designated isolate L12, Israel 2004), an epiphytic and non-pathogenic basidiomycete yeast, was isolated in our lab from strawberry leaves. P. aphidis L12 secretions were found to inhibit broad range of plant pathogens. This work demonstrates that metabolites isolated from the biocontrol agent P. aphidis (isolate L12) can inhibit varied fungal and bacterial phytopathogens. Biologically active metabolites were extracted from P. aphidis biomass, using the organic solvent ethyl acetate. The antimicrobial activity of the extract was demonstrated, both in vitro and in planta. Using disk diffusion assays, the following inhibition zones were obtained: 43cm² for Pseudomonas syringae pv. tomato, 28.5cm² for Xanthomonas campestris pv. vesicatoria, 59cm² for Clavibacter michiganensis subsp. michiganensis, 34cm² for Erwinia amylovora and 34cm² for Agrobacterium tumefaciens. Additionally, strong inhibitory activity of the extract against fungi mycelial growth was established, with IC₅₀ values of 606µg ml⁻¹ for Botrytis cinerea, 221µg ml⁻¹ for Pythium spp., 519µg ml⁻¹ for Rhizoctonia solani, 455µg ml⁻¹ for Sclerotinia sclerotiorum, 2270µg ml⁻¹ for Fusarium oxysporum f. sp. lycopersici, and 2038µg ml⁻¹ for Alternaria alternata. The results of the in planta experiments demonstrated a dose-dependent reduction in disease infection. Significant inhibition of B. cinerea lesions on tomato plants was obtained when a spore suspension of this pathogen was treated with extract concentrations higher than 4.2mg ml⁻¹. Concentration of 7mg ml⁻¹ caused a reduction of over 95% in the lesion size of B. cinerea on tomato plants. The strong antimicrobial activity demonstrated both in vitro and in planta against varied phytopathogens, may indicate that the extracted antimicrobial metabolites have potential to serve as natural pesticides in the field.

Keywords: antimicrobial, B. cinerea, metabolites, natural pesticides, P. aphidis

Procedia PDF Downloads 231
303 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 231
302 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 344
301 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region

Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal

Abstract:

Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.

Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification

Procedia PDF Downloads 173
300 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 301
299 Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania

Authors: Charles Ruffner, Michael Manton, Gintautas Kibirkstis, Gediminas Brazaitas, Vitas Marozas, Ekaterine Makrickiene, Rutile Pukiene, Per Angelstam

Abstract:

In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes.

Keywords: biodiversity conservation, cultural burning, dendrochronology, forest dynamics, forest management, succession

Procedia PDF Downloads 200