Search results for: climate network
5983 Variability of Climatic Elements in Nigeria Over Recent 100 Years
Authors: T. Salami, O. S. Idowu, N. J. Bello
Abstract:
Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.Keywords: climate, variability, flooding, excessive rainfall
Procedia PDF Downloads 3845982 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 3085981 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 1805980 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 1445979 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 145978 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review
Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin
Abstract:
Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.Keywords: Green roofs, INWQS, MSMA-SME, rainwater harvesting, water treatment, water quality parameter, WQI
Procedia PDF Downloads 5335977 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 1275976 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1115975 Enhancing Throughput for Wireless Multihop Networks
Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis
Abstract:
Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network
Procedia PDF Downloads 5185974 Optimizing the Location of Parking Areas Adapted for Dangerous Goods in the European Road Transport Network
Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio
Abstract:
The transportation of dangerous goods by lorries throughout Europe must be done by using the roads conforming the European Road Transport Network. In this network, there are several parking areas where lorry drivers can park to rest according to the regulations. According to the "European Agreement concerning the International Carriage of Dangerous Goods by Road", parking areas where lorries transporting dangerous goods can park to rest, must follow several security stipulations to keep safe the rest of road users. At this respect, these lorries must be parked in adapted areas with strict and permanent surveillance measures. Moreover, drivers must satisfy several restrictions about resting and driving time. Under these facts, one may expect that there exist enough parking areas for the transport of this type of goods in order to obey the regulations prescribed by the European Union and its member countries. However, the already-existing parking areas are not sufficient to cover all the stops required by drivers transporting dangerous goods. Our main goal is, starting from the already-existing parking areas and the loading-and-unloading location, to provide an optimal answer to the following question: how many additional parking areas must be built and where must they be located to assure that lorry drivers can transport dangerous goods following all the stipulations about security and safety for their stops? The sense of the word “optimal” is due to the fact that we give a global solution for the location of parking areas throughout the whole European Road Transport Network, adjusting the number of additional areas to be as lower as possible. To do so, we have modeled the problem using graph theory since we are working with a road network. As nodes, we have considered the locations of each already-existing parking area, each loading-and-unloading area each road bifurcation. Each road connecting two nodes is considered as an edge in the graph whose weight corresponds to the distance between both nodes in the edge. By applying a new efficient algorithm, we have found the additional nodes for the network representing the new parking areas adapted for dangerous goods, under the fact that the distance between two parking areas must be less than or equal to 400 km.Keywords: trans-european transport network, dangerous goods, parking areas, graph-based modeling
Procedia PDF Downloads 2805973 Effects of Fermentation Techniques on the Quality of Cocoa Beans
Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi
Abstract:
Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.Keywords: fermentation, effects, fermentation materials, period, quality
Procedia PDF Downloads 2075972 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1055971 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 2275970 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing
Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang
Abstract:
With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.Keywords: heat island effect, neural network, comprehensive evaluation, visualization
Procedia PDF Downloads 1335969 Description of the Non-Iterative Learning Algorithm of Artificial Neuron
Authors: B. S. Akhmetov, S. T. Akhmetova, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin
Abstract:
The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron.Keywords: artificial neuron, biometrics, biometrical applications, learning of neuron, non-iterative algorithm
Procedia PDF Downloads 4945968 Language Development and Growing Spanning Trees in Children Semantic Network
Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh
Abstract:
In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.Keywords: maximum spanning trees, word-embedding, semantic networks, language development
Procedia PDF Downloads 1455967 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network
Authors: Amel Ourici
Abstract:
An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network
Procedia PDF Downloads 6085966 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 3785965 Leveraging Li-Fi to Enhance Security and Performance of Medical Devices
Authors: Trevor Kroeger, Hayden Williams, Edward Holzinger, David Coleman, Brian Haberman
Abstract:
The network connectivity of medical devices is increasing at a rapid rate. Many medical devices, such as vital sign monitors, share information via wireless or wired connections. However, these connectivity options suffer from a variety of well-known limitations. Wireless connectivity, especially in the unlicensed radio frequency bands, can be disrupted. Such disruption could be due to benign reasons, such as a crowded spectrum, or to malicious intent. While wired connections are less susceptible to interference, they inhibit the mobility of the medical devices, which could be critical in a variety of scenarios. This work explores the application of Light Fidelity (Li-Fi) communication to enhance the security, performance, and mobility of medical devices in connected healthcare scenarios. A simple bridge for connected devices serves as an avenue to connect traditional medical devices to the Li-Fi network. This bridge was utilized to conduct bandwidth tests on a small Li-Fi network installed into a Mock-ICU setting with a backend enterprise network similar to that of a hospital. Mobile and stationary tests were conducted to replicate various different situations that might occur within a hospital setting. Results show that in room Li-Fi connectivity provides reasonable bandwidth and latency within a hospital like setting.Keywords: hospital, light fidelity, Li-Fi, medical devices, security
Procedia PDF Downloads 1025964 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm
Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako
Abstract:
There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.Keywords: capacitor banks, IEEE bus 14-network, pre-insertion resistor, standalone wind farm
Procedia PDF Downloads 4415963 Transit Network Design Problem Issues and Challenges
Authors: Mahmoud Owais
Abstract:
Public Transit (P.T) is very important means to reduce traffic congestion, to improve urban environmental conditions and consequently affects people social lives. Planning, designing and management of P.T are the key issues for offering a competitive mode that can compete with the private transportation. These transportation planning, designing and management issues are addressed in the Transit Network Design Problem (TNDP). It deals with a complete hierarchy of decision making process. It includes strategic, tactical and operational decisions. The main body of TNDP is two stages, namely; route design stage and frequency setting. The TNDP is extensively studied in the last five decades; however the research gate is still widely open due to its many practical and modeling challenges. In this paper, a comprehensive background is given to illustrate the issues and challenges related to the TNDP to help in directing the incoming researches towards the untouched areas of the problem.Keywords: frequency setting, network design, transit planning, urban planning
Procedia PDF Downloads 3845962 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks
Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi
Abstract:
Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.Keywords: fiber-wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC)
Procedia PDF Downloads 5315961 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System
Authors: Iwan Cony Setiadi, Aulia M. T. Nasution
Abstract:
The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network
Procedia PDF Downloads 3225960 Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario
Authors: Mahima Shrivastava, Soumya Kar, B. Swetha Malika, Lalu Saheb, M. Muthu Kumar, P. V. Ponambala Moorthi
Abstract:
Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures.Keywords: climate change, geo-referencing tools, life-cycle cost, multiple-calamity prone regions, pre-mitigation strategies, sustainable policies
Procedia PDF Downloads 3795959 Social Distancing as a Population Game in Networked Social Environments
Authors: Zhijun Wu
Abstract:
While social living is considered to be an indispensable part of human life in today's ever-connected world, social distancing has recently received much public attention on its importance since the outbreak of the coronavirus pandemic. In fact, social distancing has long been practiced in nature among solitary species and has been taken by humans as an effective way of stopping or slowing down the spread of infectious diseases. A social distancing problem is considered for how a population, when in the world with a network of social sites, decides to visit or stay at some sites while avoiding or closing down some others so that the social contacts across the network can be minimized. The problem is modeled as a population game, where every individual tries to find some network sites to visit or stay so that he/she can minimize all his/her social contacts. In the end, an optimal strategy can be found for everyone when the game reaches an equilibrium. The paper shows that a large class of equilibrium strategies can be obtained by selecting a set of social sites that forms a so-called maximal r-regular subnetwork. The latter includes many well-studied network types, which are easy to identify or construct and can be completely disconnected (with r = 0) for the most-strict isolation or allow certain degrees of connectivity (with r > 0) for more flexible distancing. The equilibrium conditions of these strategies are derived. Their rigidity and flexibility are analyzed on different types of r-regular subnetworks. It is proved that the strategies supported by maximal 0-regular subnetworks are strictly rigid, while those by general maximal r-regular subnetworks with r > 0 are flexible, though some can be weakly rigid. The proposed model can also be extended to weighted networks when different contact values are assigned to different network sites.Keywords: social distancing, mitigation of spread of epidemics, populations games, networked social environments
Procedia PDF Downloads 1335958 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2165957 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1265956 A Computer-Aided System for Detection and Classification of Liver Cirrhosis
Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy
Abstract:
This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy
Procedia PDF Downloads 4615955 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks
Authors: Rahul Malhotra
Abstract:
The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.Keywords: routing protocol, MANET, AODV, On Demand Distance Vector Routing, DSR, Dynamic Source Routing
Procedia PDF Downloads 2755954 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 158