Search results for: adobe masonry buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1838

Search results for: adobe masonry buildings

488 Design Practices, Policies and Guidelines towards Implementing Architectural Passive Cooling Strategies in Public Library Buildings in Temperate Climates

Authors: Lesley Metibogun, Regan Potangaroa

Abstract:

Some existing sustainable public libraries in New Zealand now depend on air conditioning system for cooling. This seems completely contradictory to sustainable building initiatives. A sustainable building should be ‘self- sufficient’ and must aim at optimising the use of natural ventilation, wind and daylight and avoiding too much summer heat penetration into the building, to save energy consumption and enhance occupants’ comfort. This paper demonstrates that with appropriate architectural passive design input public libraries do not require air conditioning. Following a brief outline of how our dependence on air conditioning has spread over the full range of building types and climatic zones, this paper focuses on public libraries in temperate climates where passive cooling should be feasible for long periods of mild outside temperature. It was found that current design policies, regulations and guidelines and current building design practices militate passive cooling strategies. Perceived association with prestige, inflexibility of design process, rigid planning regulations and sustainability rating systems were identified as key factors forcing the need for air conditioning. Recommendations are made on how to further encourage development in this direction from the perspective of architectural design. This paper highlights how architectural passive cooling design strategies should be implemented in government initiated policies and regulations to develop a more sustainable public libraries.

Keywords: public library, sustainable design, temperate climate, passive cooling, air conditioning

Procedia PDF Downloads 227
487 Construction 4.0: The Future of the Construction Industry in South Africa

Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.

Keywords: building information technology, Construction 4.0, Industry 4.0, smart site

Procedia PDF Downloads 375
486 Effect of Irregularities on Seismic Performance of Building

Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel

Abstract:

In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.

Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO

Procedia PDF Downloads 55
485 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 164
484 Campus Signage and Wayfinding Design Guidelines: Challenges of Visual Literacy in University of Port Harcourt

Authors: Kasi Jockeil-Ojike

Abstract:

The study of signage and wayfinding design guidelines is to provide consistent, coherent, and comprehensive guidelines for all type of signage design that may be applied to guide persons from the freeway into campus, and to specific building. As the world becomes more complex and the population increases, people increasingly rely on signage and wayfinding systems to navigate their way in built environment such as university campus. This paper will demonstrate and discuss signage and wayfinding, and the importance of visual literacy in university campuses. It discusses the process of wayfinding and signage, how poor signage and wayfinding systems affect people when navigating, and why wayfinding is more than just signage. Hence, this paper tries to examine the design guideline that primarily addresses the signage and wayfinding system that improves visual literacy within University of Port Harcourt multi-campuses. In doing this, the paper explore the environmental graphic design senori-emotional values and communicative information theories that takes the subjectivity of the observer in account. By making these connections, the paper will also determine what University of Port Harcourt need to focus on to be counted in the global trends, using developed visual communication guidelines based on previous studies or concept from professional. In conclusion, information about why physical structures (buildings and waypaths) on University of Port Harcourt multiple campuses need to be branded in self-communicative manner using signage and wayfinding design as integral part of its physical planning policy is recommended.

Keywords: campus-signage, movement, visual-literacy, wayfinding-guidelines

Procedia PDF Downloads 420
483 Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 327
482 A Study on the Synthetic Resin of Fire Risk Using the Room Corner Test

Authors: Ji Hun Choi, Seung Un Chae, Kyeong Suk Cho

Abstract:

Synthetic resins are widely used in various fields including electricity, engineering, construction and agriculture. Many of interior and exterior finishing materials for buildings are synthetic resin products. In this study, full-scale fire tests were conducted on polyvinyl chloride, polypropylene and urethane in accordance with the “ISO 9705: Fire test - Full-scale room test for surface products” to measure heat release rate, toxic gas emission and smoke production rate. Based on the tests, fire growth pattern and fire risk were analyzed. Findings from the tests conducted on polyvinyl chloride and urethane are as follows. The total heat release rate and total smoke production rate of polyvinyl chloride were 98.89MW and 5284.41m2, respectively and its highest CO2 concentration was 0.149%. The values obtained from the test with urethane were 469.94 MW, 3396.28 m2 and 1.549%. While heat release rate and CO2 concentration were higher in urethane implying its high combustibility, smoke production rate was 1.5 times higher in polyvinyl chloride. Follow-up tests are planned to be conducted to accumulate data for the evaluation of heat emission and fire risk associated with synthetic resins.

Keywords: synthetic resins, fire test, full-scale test, heat release rate, smoke production rate, polyvinyl chloride, polypropylene, urethane

Procedia PDF Downloads 411
481 Study on the Relationship between the Urban Geography and Urban Agglomeration to the Effects of Carbon Emissions

Authors: Peng-Shao Chen, Yen-Jong Chen

Abstract:

In recent years, global warming, the dramatic change in energy prices and the exhaustion of natural resources illustrated that energy-related topic cannot be ignored. Despite the relationship between the cities and CO₂ emissions has been extensively studied in recent years, little attention has been paid to differences in the geographical location of the city. However, the geographical climate has a great impact on lifestyle from city to city, such as the type of buildings, the major industry of the city, etc. Therefore, the paper instigates empirically the effects of kinds of urban factors and CO₂ emissions with consideration of the different geographic, climatic zones which cities are located. Using the regression model and a dataset of urban agglomeration in East Asia cities with over one million population, including 2005, 2010, and 2015 three years, the findings suggest that the impact of urban factors on CO₂ emissions vary with the latitude of the cities. Surprisingly, all kinds of urban factors, including the urban population, the share of GDP in service industry, per capita income, and others, have different level of impact on the cities locate in the tropical climate zone and temperate climate zone. The results of the study analyze the impact of different urban factors on CO₂ emissions in urban area with different geographical climate zones. These findings will be helpful for the formulation of relevant policies for urban planners and policy makers in different regions.

Keywords: carbon emissions, urban agglomeration, urban factor, urban geography

Procedia PDF Downloads 245
480 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation

Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang

Abstract:

This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.

Keywords: urban heat, public health, climate change

Procedia PDF Downloads 76
479 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars

Authors: Shahrad Ebrahimzadeh

Abstract:

Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and offering a higher structural efficiency compared to solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCB) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs to be further investigated is the replacement of steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of GFRP bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.

Keywords: design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength

Procedia PDF Downloads 172
478 The Scenario of Disaster Management in Nepal: A Case Study of Nepal Earthquakes, 2015

Authors: Sandesh Yadav

Abstract:

Earthquake constitutes one of the most terrible natural hazards which often turn into a disaster or causing extensive devastation and loss of human lives and their properties. In the year 2015, Nepal experienced the most devastating earthquakes on 25th April, 2015 and 12th May, 2015 respectively. Several villages, towns, human constructions and their properties, lives were completely damaged. The hazardous effect of Nepal earthquakes depends not only on their magnitude of Richter Scale on intensity alone, but also on so many factors, such as geology of earth crust (lithology, elasticity, soil condition, permissible stress, rock structures etc.). The unscientifically and non-seismically designed buildings resulted in huge loss of life and property. Further, the loss due to earthquake can be grouped into three broad categories namely agriculture sector (loss of livestock, poultry and food stocks), industrial sector (mainly brick production industry) and infrastructural sector (transportation infrastructure). The present research study begins with the tracing of Geological history of earthquakes in Nepal along with identification of causes of Nepal earthquakes, 2015. Secondly, research study identifies the extent of tremors of earthquakes of 2015 in Nepal and surrounding areas along with their sphere of impact. Thirdly, the research study tries to assess the agricultural loss, industrial loss and infrastructural loss due to earthquakes in Nepal. Lastly, the research study ends with the various recommendations and suggestions in order to minimize the loss due to earthquakes in the future.

Keywords: earthquake, richter scale, sphere of impact, tremors

Procedia PDF Downloads 222
477 Identification of Social Responsibility Factors within Mega Construction Projects

Authors: Ali Alotaibi, Francis Edum-Fotwe, Andrew Price /

Abstract:

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

Keywords: social responsibility, construction projects, economic, social, environmental, indicators

Procedia PDF Downloads 141
476 Municipal Solid Waste Management Characteristics and Management Challenges in Bauchi Metropolitan Area, Nigeria

Authors: Haruna Abdu Usman, Bashir Usman Mohammed, Mohammed Umar Jamil

Abstract:

Municipal solid waste management constitutes a serious problem bedeviling environmental protection agencies in many cities of developing countries. Most agencies do not collect the totality of the waste generated in their cities. This study presents the current solid waste management practices and problems in Bauchi metropolis, Bauchi state Nigeria. The general feature is characterized by inefficient, insufficient and irrational collection and improper disposal alternatives. The consequent environmental effects of these problems depict clogged city drains, uncollected heap of waste on road sides of residential areas, vacant plots and uncompleted buildings and highways. This contributes immensely to flooding in the city. The major challenges facing the state environmental protection agency includes; lack of collection and disposal points, technical and institutional arrangements, financial resources and general attitude of the serving public among others. The study suggested a comprehensive and integrated approach to the solid waste management which recognizes and incorporates the interventionist role of the state government, the private formal and informal waste management operators and the serving public.

Keywords: municipal solid waste, bauchi metropolitan area, environmental protection agency, solid waste management, waste disposal

Procedia PDF Downloads 718
475 Determination of Surface Deformations with Global Navigation Satellite System Time Series

Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak

Abstract:

The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.

Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations

Procedia PDF Downloads 145
474 Public Art and Public Space in an Emerging Knowledge Economy: The Case of Doha

Authors: Grichting Anna, Al Sada Sara, Caccayam Angelica, Khan Urshi

Abstract:

The Qatar Museums Authority recently announced a series of public art initiatives in Doha with the purpose of 'bringing art out of the walls of the museum' to make it accessible to the public on a daily basis and to encourage discussion and debate. While the installation of sculptures in public spaces is not new in Doha, the practice of integrating art in public spaces and architectural projects is reaching a new dimension as internationally renowned artists – such as Damien Hirst and Richard Serra - are being commissioned to install their works in the public spaces and buildings of the city of Doha as well as in more remote desert locations. This research discusses the changing presence, role and context of public art in Doha, both from a historical and cultural overview, and the different forms and media as well as the typologies of urban and public spaces in which the art is installed. It examines the process of implementing site-specific artworks, looking at questions of scale, history, social meaning and formal aesthetics. The methodologies combine theoretical research on the understanding of public art and its role and placement in public space, as well as empirical research on contemporary public art projects in Doha, based on documentation and interviews and as well as site and context analysis of the urban or architectural spaces within which the art is situated. Surveys and interviews – using social media - in different segments of the contemporary Qatari society, including all nationalities and social groups, are used to measure and qualify the impacts and effects on the population.

Keywords: public space, public art, urban design, knowledge economy

Procedia PDF Downloads 499
473 The Relationship between Infill Development Indicators and Quality of Life in Urban Neighborhoods

Authors: S. Mohammad Reza Khatibi

Abstract:

Statistics on urbanization in Iran and around the world show that urbanization rate and urban population had had an increasing growth and, during five decades, this trend shows the fact that growth will still continue for a long time. Therefore, instead of an irregular horizontal city development and growth, a sustainable development is achievable by filling the existing city fabric, organizing the density and changing the use of incompatible old or urban buildings. One approach is the infill development. Infill development is the development of vacant land or wasteland abandoned within built areas or where there already exist facilities and equipment. Simply put, infill development is the use of empty spaces or those lacking intra-city use for city development. Additionally, fulfillment of social justice and creating a safe, secure and desirable atmosphere for citizens to live and stay active along with acquiring equal life opportunities, are among the goals of vision plan of Iran in conflict with which, certain environments have been created by city neighborhoods having physical, social, economic, etc. problems. Accordingly, in order to meet the extensive need of many cities for openness to growing population, this paper aims to investigate the relationship between infill development indicators and life quality in urban neighborhoods, using descriptive-analytical research method. Findings show that infill development indicators in three physical, social and economic categories can be adapted with quality components of urban environments, especially urban neighborhoods, and related guidelines can be offered.

Keywords: infill development, life quality, urban neighborhoods, indicator

Procedia PDF Downloads 334
472 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability

Procedia PDF Downloads 289
471 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures

Authors: Mahyar Maali, Merve Sagiroglu

Abstract:

Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.

Keywords: cold-formed steel, screwed connection, connection, screw length

Procedia PDF Downloads 158
470 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 723
469 The Measurements of Nitrogen Dioxide Pollution in Street Canyons

Authors: Aukse Miskinyte, Audrius Dedele

Abstract:

The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.

Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon

Procedia PDF Downloads 249
468 Memorabilia of Suan Sunandha through Interactive User Interface

Authors: Nalinee Sophatsathit

Abstract:

The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.

Keywords: interactive user navigation, high-functionality context, situational context, human-computer interaction

Procedia PDF Downloads 333
467 Analysis of Rectangular Concrete-Filled Double Skin Tubular Short Columns with External Stainless Steel Tubes

Authors: Omnia F. Kharoob, Nashwa M. Yossef

Abstract:

Concrete-filled double skin steel tubular (CFDST) columns could be utilized in structures such as bridges, high-rise buildings, viaducts, and electricity transmission towers due to its great structural performance. Alternatively, lean duplex stainless steel has recently gained significant interest for its high structural performance, similar corrosion resistance and lower cost compared to the austenitic steel grade. Hence, this paper presents the nonlinear finite element (FE) analysis, behaviour and design of rectangular outer lean duplex stainless steel (EN 1.4162) CFDST short columns under compression. All classes of the outer rectangular hollow section according to the depth-to-thickness (D/t) ratios were considered. The results showed that the axial ultimate strength of rectangular CFDST short columns increased linearly by increasing the concrete compressive strength, while it does not influence when changing the hollow ratios. Finally, the axial capacities were compared with the available design methods, and recommendations were conducted for the design strength of this type of column.

Keywords: concrete-filled double skin columns, compressive strength, finite element analysis, lean duplex stainless steel, ultimate axial strength, short columns

Procedia PDF Downloads 274
466 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract:

Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector

Procedia PDF Downloads 182
465 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 175
464 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 195
463 Studies on Performance of an Airfoil and Its Simulation

Authors: Rajendra Roul

Abstract:

The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.

Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer

Procedia PDF Downloads 391
462 An Empirical Assessment of Indoor Environmental Quality in Developing Sub-Saharan Countries: Evaluation of Existing Gaps and Potential Risk

Authors: Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Manuel Carlos Gameiro da Silva

Abstract:

Indoor environmental quality (IEQ) remains a global concern because it impacts people's comfort, health, performance, and general well-being. People spend a significant amount of time in buildings or while commuting, hence ensuring the minimal risk in indoor spaces by ensuring suitable IEQ. IEQ studies are limited regarding developing sub-Saharan countries, whereas there is also a huge risk and concern for the current population and geometric growth as many cities in the region will become mega-cities by 2040 (World Bank report). The absence of suitable IEQ regulations and energy poverty are reasons to assess the IEQ gaps for increased awareness of sustainable interventions to minimize the associated risk. This study evaluates the gaps and potential hazards that exist in the IEQ of sub-Saharan countries using empirical studies of hospital occupants and BRT bus passengers and drivers. The Surveys were conducted in 3 cities of the Democratic Republic of Congo and Lagos metropolis of Nigeria. The results suggest that gaps exist in IEQ for these regions. The gaps indicate existential risk to people’s health, comfort, and well-being. The inferential conclusions are that there is a need for further scientific studies, improvement in IEQ conditions, and ensuring suitable regulations for developing sub-Saharan countries.

Keywords: health hazards, hospitals indoor environmental quality, indoor spaces, occupants, sub-Saharan countries, vehicles

Procedia PDF Downloads 50
461 A New Smart Plug for Home Energy Management

Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu

Abstract:

Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.

Keywords: energy efficiency, home energy management, smart home, smart plug

Procedia PDF Downloads 703
460 Augmented Reality: New Relations with the Architectural Heritage Education

Authors: Carla Maria Furuno Rimkus

Abstract:

The technologies related to virtual reality and augmented reality in combination with mobile technologies, are being more consolidated and used each day. The increasing technological availability along with the decrease of their acquisition and maintenance costs, have favored the expansion of its use in the field of historic heritage. In this context it is focused, in this article, on the potential of mobile applications in the dissemination of the architectural heritage, using the technology of Augmented Reality. From this perspective approach, it is discussed about the process of producing an application for mobile devices on the Android platform, which combines the technologies of geometric modeling with augmented reality (AR) and access to interactive multimedia contents with cultural, social and historic information of the historic building that we take as the object of study: a block with a set of buildings built in the XVIII century, known as "Quarteirão dos Trapiches", which was modeled in 3D, coated with the original texture of its facades and displayed on AR. From this perspective approach, this paper discusses about methodological aspects of the development of this application regarding to the process and the project development tools, and presents our considerations on methodological aspects of developing an application for the Android system, focused on the dissemination of the architectural heritage, in order to encourage the tourist potential of the city in a sustainable way and to contribute to develop the digital documentation of the heritage of the city, meeting a demand of tourists visiting the city and the professionals who work in the preservation and restoration of it, consisting of architects, historians, archaeologists, museum specialists, among others.

Keywords: augmented reality, architectural heritage, geometric modeling, mobile applications

Procedia PDF Downloads 459
459 Noise Pollution in Nigerian Cities: Case Study of Bida, Nigeria

Authors: Funke Morenike Jiyah, Joshua Jiyah

Abstract:

The occurrence of various health issues have been linked to excessive noise pollution in all works of life as evident in many research efforts. This study provides empirical analysis of the effects of noise pollution on the well-being of the residents of Bida Local Government Area, Niger State, Nigeria. The study adopted a case study research design, involving cross-sectional procedure. Field observations and medical reports were obtained to support the respondents’ perception on the state of their well-being. The sample size for the study was selected using the housing stock in the various wards. One major street in each ward was selected. A total of 1,833 buildings were counted along the sampled streets and 10% of this was selected for the administration of structured questionnaire.The environmental quality of the wards was determined by measuring the noise level using Testo 815 noise meters. The result revealed that Bariki ward which houses the GRA has the lowest noise level of 37.8 dB(A)while the noise pollution levels recorded in the other thirteen wards were all above the recommended levels. The average ambient noise level in sawmills, commercial centres, road junctions and industrial areas were above 90 dB(A). The temporal record from the Federal Medical Centre, Bida revealed that, apart from malaria, hypertension (5,614 outpatients) was the most prevalent health issue in 2013 alone. The paper emphasised the need for compatibility consideration in the choice of residential location, the use of ear muffler and effective enforcement of zoning regulations.

Keywords: bida, decibels, environmental quality, noise, well-being

Procedia PDF Downloads 114