Search results for: energy systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15649

Search results for: energy systems

2149 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode

Authors: S. B. Mayil Vealan, C. Sekar

Abstract:

Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.

Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials

Procedia PDF Downloads 72
2148 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 228
2147 Comparison of Growth Medium Efficiency into Stevia (Stevia rebaudiana Bertoni) Shoot Biomass and Stevioside Content in Thin-Layer System, TIS RITA® Bioreactor, and Bubble Column Bioreactor

Authors: Nurhayati Br Tarigan, Rizkita Rachmi Esyanti

Abstract:

Stevia (Stevia rebaudiana Bertoni) has a great potential to be used as a natural sweetener because it contains steviol glycoside, which is approximately 100 - 300 times sweeter than sucrose, yet low calories. Vegetative and generative propagation of S. rebaudiana is inefficient to produce stevia biomass and stevioside. One of alternative for stevia propagation is in vitro shoot culture. This research was conducted to optimize the best medium for shoot growth and to compare the bioconversion efficiency and stevioside production of S. rebaudiana shoot culture cultivated in thin layer culture (TLC), recipient for automated temporary immersion system (TIS RITA®) bioreactor, and bubble column bioreactor. The result showed that 1 ppm of Kinetin produced a healthy shoot and the highest number of leaves compared to BAP. Shoots were then cultivated in TLC, TIS RITA® bioreactor, and bubble column bioreactor. Growth medium efficiency was determined by yield and productivity. TLC produced the highest growth medium efficiency of S. rebaudiana, the yield was 0.471 ± 0.117 gbiomass.gsubstrate-1, and the productivity was 0.599 ± 0.122 gbiomass.Lmedium-1.day-1. While TIS RITA® bioreactor produced the lowest yield and productivity, 0.182 ± 0.024 gbiomass.gsubstrate-1 and 0.041 ± 0.0002 gbiomass.Lmedium-1.day-1 respectively. The yield of bubble column bioreactor was 0.354 ± 0.204 gbiomass.gsubstrate-1 and the productivity was 0,099 ± 0,009 gbiomass.Lmedium-1.day-1. The stevioside content from the highest to the lowest was obtained from stevia shoot which was cultivated on TLC, TIS RITA® bioreactor, and bubble column bioreactor; the content was 93,44 μg/g, 42,57 μg/g, and 23,03 μg/g respectively. All three systems could be used to produce stevia shoot biomass, but optimization on the number of nutrition and oxygen intake was required in each system.

Keywords: bubble column, growth medium efficiency, Stevia rebaudiana, stevioside, TIS RITA®, TLC

Procedia PDF Downloads 255
2146 Modifications in Design of Lap Joint of Fiber Metal Laminates

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 285
2145 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery

Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia

Abstract:

In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.

Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium

Procedia PDF Downloads 197
2144 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 276
2143 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout

Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini

Abstract:

The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation

Procedia PDF Downloads 110
2142 The Relevance of Psychology in South Africa: A Content Analysis of Psychology Masters Theses from 1998 to 2017

Authors: Elron Fouten

Abstract:

Recently, debates surrounding the social relevance of psychology in South Africa have focussed on how the growing neoliberal rationality within academia has again resulted in the discipline catering to the needs of powerful social groupings to protect its own economic interests, rather than producing socially relevant knowledge. Consequently, this study aimed to conduct a content analysis of the recent research output of psychology masters students, to establish whether it has produced research that addresses local and national psychosocial issues and as such deemed socially relevant knowledge. The study sampled clinical, counselling, and research psychology masters theses from 16 South African universities submitted between 1998 and 2017. Overall, 2001 theses were sampled, which were analysed using qualitative content analysis predominantly based on the descriptive categories identified in similar studies using published journal articles. Results indicated that empirical qualitative theses, using systems-oriented theory and post-modern frameworks were most prevalent. Further, traditional topics within psychology had relatively more weighting compared to more social topics. Although a significant number of theses recruited participants from working-class or poor backgrounds, there was an overreliance on participants from urban areas located in some of the country’s wealthiest provinces. Despite a strong adult-centric focus, trends regarding participants’ race and gender roughly resembled current population demographics. Overall, the results indicate that psychology in South Africa, at least at university-level, is to some extent trying to engage with national psychosocial concerns. However, there are still several key areas which need to be addressed to ensure the continued social relevance of the discipline.

Keywords: adult-centric, content analysis, relevance, psychosocial

Procedia PDF Downloads 127
2141 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 260
2140 A PRISMA Systematic Review: Parent Sensitivity in Autism Spectrum Disorder and Its Relationship With Child and Parent Characteristics

Authors: Gabrielle Veloso, Melanie Porter, Kelsie Boulton, Adam Guastella

Abstract:

The aim of the current systematic review was to examine child and parent factors and their associations with parent sensitivity towards children with Autism Spectrum Disorder (ASD). Eight bibliographic databases were used to identify peer-reviewed journal articles examining these associations via quantitative analyses, with parent sensitivity measured via validated and reliable observation coding systems. Thirty-one studies were finalized as having met full criteria for inclusion. The review found agreement across studies that parent sensitivity was positively associated with the child’s initiations and responsiveness toward their parent, with more frequent parent-directed behaviors providing greater opportunity for parents to act and react in sensitive manner. There was also substantial evidence that parent sensitivity predicted later growth in child language ability and child social skills. Other factors such as child attachment, parent insightfulness toward their child, and parent resolution of the diagnosis were also identified across a number of studies as being positively associated with parent sensitivity, however, interpretations of these findings were limited by the absence of covariates identified in the literature as explaining much of the variance in parent sensitivity. With respect to non-significant associations, the literature reliably found that parents showed sensitivity toward their child with ASD, regardless of child age, ASD symptomology, concurrent child social skills, and concurrent child cognitive abilities. The robust associations found in this review and their potential explanations can serve as a jump off point in identifying an understanding protective and risk factors for families of children with ASD. With regard to future directions in research, assessment of the studies’ methodological quality identified points for improvement with respect to the measurement of parent sensitivity, as well as the consideration of several important methodological confounds that may be controlled for in statistical analyses.

Keywords: ASD, autism, parenting, parent sensitivity

Procedia PDF Downloads 117
2139 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites

Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova

Abstract:

The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.

Keywords: bioceramics, composites, functionalization, surface development

Procedia PDF Downloads 105
2138 The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming

Authors: Yasmin Hussein Embaby

Abstract:

Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample.

Keywords: beginners, endorphin hormone, relaxing exercises, swimming

Procedia PDF Downloads 191
2137 A Philosophical Investigation into African Conceptions of Personhood in the Fourth Industrial Revolution

Authors: Sanelisiwe Ndlovu

Abstract:

Cities have become testbeds for automation and experimenting with artificial intelligence (AI) in managing urban services and public spaces. Smart Cities and AI systems are changing most human experiences from health and education to personal relations. For instance, in healthcare, social robots are being implemented as tools to assist patients. Similarly, in education, social robots are being used as tutors or co-learners to promote cognitive and affective outcomes. With that general picture in mind, one can now ask a further question about Smart Cities and artificial agents and their moral standing in the African context of personhood. There has been a wealth of literature on the topic of personhood; however, there is an absence of literature on African personhood in highly automated environments. Personhood in African philosophy is defined by the role one can and should play in the community. However, in today’s technologically advanced world, a risk is that machines become more capable of accomplishing tasks that humans would otherwise do. Further, on many African communitarian accounts, personhood and moral standing are associated with active relationality with the community. However, in the Smart City, human closeness is gradually diminishing. For instance, humans already do engage and identify with robotic entities, sometimes even romantically. The primary aim of this study is to investigate how African conceptions of personhood and community interact in a highly automated environment such as Smart Cities. Accordingly, this study lies in presenting a rarely discussed African perspective that emphasizes the necessity and the importance of relationality in handling Smart Cities and AI ethically. Thus, the proposed approach can be seen as the sub-Saharan African contribution to personhood and the growing AI debates, which takes the reality of the interconnectedness of society seriously. And it will also open up new opportunities to tackle old problems and use existing resources to confront new problems in the Fourth Industrial Revolution.

Keywords: smart city, artificial intelligence, personhood, community

Procedia PDF Downloads 187
2136 A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Oil and Gas Critical Infrastructures in the Niger Delta

Authors: Justin A. Udie, Subhes C. Bhatthacharyya, Leticia Ozawa-Meida

Abstract:

The impact of climate change is severe in the Niger Delta and critical oil and gas infrastructures are vulnerable. This is partly due to lack of specific impact assessment framework to assess impact indices on both existing and new infrastructures. The purpose of this paper is to develop a framework for the assessment of climate change impact on critical oil and gas infrastructure in the region. Comparative and documentary methods as well as analysis of frameworks were used to develop a flexible, integrated and conceptual four dimensional framework underpinning; 1. Scoping – the theoretical identification of inherent climate burdens, review of exposure, adaptive capacities and delineation of critical infrastructure; 2. Vulnerability assessment – presents a systematic procedure for the assessment of infrastructure vulnerability. It provides real time re-scoping, practical need for data collection, analysis and review. Physical examination of systems is encouraged to complement the scoped data and ascertain the level of exposure to relevant climate risks in the area; 3. New infrastructure – consider infrastructures that are still at developmental level. It seeks to suggest the inclusion of flexible adaptive capacities in original design of infrastructures in line with climate threats and projections; 4. The Mainstreaming Climate Impact Assessment into government’s environmental decision making approach. Though this framework is designed specifically for the estimation of exposure, adaptive capacities and criticality of vulnerable oil and gas infrastructures in the Niger Delta to climate burdens; it is recommended for researchers and experts as a first-hand generic and practicable tool which can be used for the assessment of other infrastructures perceived as critical and vulnerable. The paper does not provide further tools that synch into the methodological approach but presents pointers upon which a pragmatic methodology can be developed.

Keywords: adaptation, assessment, conceptual, climate, change, framework, vulnerability

Procedia PDF Downloads 300
2135 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System

Authors: Akintunde Alo

Abstract:

The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.

Keywords: land use change, forest reserve, satellite imagery, geographical information system

Procedia PDF Downloads 341
2134 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: adult, basal metabolic rate, fao/who/unu, obesity, prediction equations

Procedia PDF Downloads 113
2133 Project Production Control (PPC) Implementation for an Offshore Facilities Construction Project

Authors: Muhammad Hakim Bin Mat Tasir, Erwan Shahfizad Hasidan, Hamidah Makmor Bakry, M. Hafiz B. Izhar

Abstract:

Every key performance indicator used to monitor a project’s construction progress emphasizes trade productivity or specific commodity run-down curves. Examples include the productivity of welding by the number of joints completed per day, quantity of NDT (Non-Destructive Tests) inspection per day, etc. This perspective is based on progress and productivity; however, it does not enable a system perspective of how we produce. This paper uses a project production system perspective by which projects are a collection of production systems comprising the interconnected network of processes and operations that represent all the work activities to execute a project from start to finish. Furthermore, it also uses the 5 Levels of production system optimization as a frame. The goal of the paper is to describe the application of Project Production Control (PPC) to control and improve the performance of several production processes associated with the fabrication and assembly of a Central Processing Platform (CPP) Jacket, part of an offshore mega project. More specifically, the fabrication and assembly of buoyancy tanks as they were identified as part of the critical path and required the highest demand for capacity. In total, seven buoyancy tanks were built, with a total estimated weight of 2,200 metric tons. These huge buoyancy tanks were designed to be reversed launching and self-upending of the jacket, easily retractable, and reusable for the next project, ensuring sustainability. Results showed that an effective application of PPC not only positively impacted construction progress and productivity but also exposed sources of detrimental variability as the focus of continuous improvement practices. This approach augmented conventional project management practices, and the results had a high impact on construction scheduling, planning, and control.

Keywords: offshore, construction, project management, sustainability

Procedia PDF Downloads 43
2132 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 75
2131 Failure to React Positively to Flood Early Warning Systems: Lessons Learned by Flood Victims from Flash Flood Disasters: the Malaysia Experience

Authors: Mohamad Sukeri Khalid, Che Su Mustaffa, Mohd Najib Marzuki, Mohd Fo’ad Sakdan, Sapora Sipon, Mohd Taib Ariffin, Shazwani Shafiai

Abstract:

This paper describes the issues relating to the role of the flash flood early warning system provided by the Malaysian Government to the communities in Malaysia, specifically during the flash flood disaster in the Cameron Highlands, Malaysia. Normally, flash flood disasters can occur as a result of heavy rainfall in an area, and that water may possibly cause flooding via streams or narrow channels. For this study, the flash flood disaster in the Cameron Highlands occurred on 23 October 2013, and as a result the Sungai Bertam overflowed after the release of water from the Sultan Abu Bakar Dam. This release of water from the dam caused flash flooding which led to damage to properties and also the death of residents and livestock in the area. Therefore, the effort of this study is to identify the perceptions of the flash flood victims on the role of the flash flood early warning system. For the purposes of this study, data collection was gathered from those flood victims who were willing to participate in this study through face-to-face interviews. This approach helped the researcher to glean in-depth information about their feeling and perceptions on the role of the flash flood early warning system offered by the government. The data were analysed descriptively and the findings show that the respondents of 22 flood victims believe strongly that the flash flood early warning system was confusing and dysfunctional, and communities had failed to response positively to it. Therefore, most of the communities were not well prepared for the releasing of water from the dam that caused property damage and 3 people were killed in Cameron Highland flash flood disaster.

Keywords: communities affected, disaster management, early warning system, flash flood disaster

Procedia PDF Downloads 685
2130 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: block caving, ground penetrating radar, reflectivity, RQD

Procedia PDF Downloads 123
2129 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 473
2128 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 137
2127 Nesting Habitat Preference of Indigenous Bumblebee, Bombus haemorrhoidalis in Himalayan Range of Azad Jammu and Kashmir, Pakistan

Authors: Umer Ayyaz Aslam Sheikh

Abstract:

Non Apis bee like the bumblebees are important due to their utilization of diverse floral plants and belong to the richest and most conspicuous flower visitors in alpine, temperate and arctic environments for pollination in both natural and managed cropping systems. These bees generally construct underground nests and habitat devastation and crumbling are major causes for their decline in nature. The present study was conducted in the Himalayan range of Azad Jammu, and Kashmir, Pakistan, surveys were conducted during the early spring season to observe maximum Bombus haemorrhoidalis queens (emerged after winter diapauses) searching for a nesting place. Whole study area was grouped into four types of landscape (open field, relatively open , relatively wooded and wooded), five habitat types (field, field boundary, pasture forest boundary and forest) and these habitat further grouped into four different patch types including withered grass, new grass, tussocks and stones and moss. Maximum nest seeking bumblebee queens preferred relatively open field landscape followed by open fields and forest boundaries. Field boundaries were recorded as most proffered habitat along with withered grasses for nesting sites of B. haemorrhoidalis queens. A wooded landscape with stone and moss type of patches were found least preferred nesting sites. This study will be helpful in the future for conservation program this for declining bumblebee species in this region. It will also provide the baseline for the conservation of other bumblebee species of the world.

Keywords: bumblebee, Bombus haemorrhoidalis, habitat, nest seeking preference, Pakistan

Procedia PDF Downloads 120
2126 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 428
2125 Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study

Authors: F. Bellali, M. Kharroubi, Y. Rady, N. Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one.

Keywords: deproteinization, pilot scale, scale, sardine pilchardus

Procedia PDF Downloads 432
2124 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 142
2123 Modelling Insider Attacks in Public Cloud

Authors: Roman Kulikov, Svetlana Kolesnikova

Abstract:

Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.

Keywords: insider attack, public cloud, cloud computing, hypervisor

Procedia PDF Downloads 349
2122 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 365
2121 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.

Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding

Procedia PDF Downloads 241
2120 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 141