Search results for: miRNA:mRNA target prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4982

Search results for: miRNA:mRNA target prediction

3662 Teaching–Learning-Based Optimization: An Efficient Method for Chinese as a Second Language

Authors: Qi Wang

Abstract:

In the classroom, teachers have been trained to complete the target task within the limited lecture time, meanwhile learners need to receive a lot of new knowledge, however, most of the time the learners come without the proper pre-class preparation to efficiently take in the contents taught in class. Under this circumstance, teachers do have no time to check whether the learners fully understand the content or not, how the learners communicate in the different contexts, until teachers see the results when the learners are tested. In the past decade, the teaching of Chinese has taken a trend. Teaching focuses less on the use of proper grammatical terms/punctuation and is now placing a heavier focus on the materials from real life contexts. As a result, it has become a greater challenge to teachers, as this requires teachers to fully understand/prepare what they teach and explain the content with simple and understandable words to learners. On the other hand, the same challenge also applies to the learners, who come from different countries. As they have to use what they learnt, based on their personal understanding of the material to effectively communicate with others in the classroom, even in the contexts of a day to day communication. To reach this win-win stage, Feynman’s Technique plays a very important role. This practical report presents you how the Feynman’s Technique is applied into Chinese courses, both writing & oral, to motivate the learners to practice more on writing, reading and speaking in the past few years. Part 1, analysis of different teaching styles and different types of learners, to find the most efficient way to both teachers and learners. Part 2, based on the theory of Feynman’s Technique, how to let learners build the knowledge from knowing the name of something to knowing something, via different designed target tasks. Part 3. The outcomes show that Feynman’s Technique is the interaction of learning style and teaching style, the double-edged sword of Teaching & Learning Chinese as a Second Language.

Keywords: Chinese, Feynman’s technique, learners, teachers

Procedia PDF Downloads 147
3661 Analyzing Environmental Emotive Triggers in Terrorist Propaganda

Authors: Travis Morris

Abstract:

The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.

Keywords: propaganda analysis, emotive triggers environmental security, frames

Procedia PDF Downloads 135
3660 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 201
3659 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 71
3658 The Difference of Menstrual Cycle Profile and Urinary Luteinizing Hormone Changes In Polycystic Ovary Syndrome And Healthy Women

Authors: Ning Li, Jiacheng Zhang, Zheng Yang, Sylvia Kang

Abstract:

Introduction: Polycystic ovary syndrome (PCOS) is a common physiological symptom in women of reproductive age. Women with PCOS may have infrequent or prolonged menstrual periods and excess male hormone (androgen) levels. Mira analyzes the cycle profiles and the luteinizing hormone (LH) changes in urine, closely related to the fertility level of healthy women and PCOS women. From the difference between the two groups, Mira helps to understand the physiological state of PCOS women and their hormonal changes in the menstrual cycle. Methods: In this study, data from 1496 cycles and information from 342 women belonging to two groups (181 PCOS and 161 Healthy) were collected and analyzed. Women test their luteinizing hormone (LH) in urine daily with Mira fertility test wand and Mira analyzer, from the day after the menstruation to the starting day of the next menstruation. All the collected data meets Mira’s user agreement and users’ identification was removed. The cycle length, LH peak, and other cycle information of the PCOS group were compared with the Healthy group. Results: The average cycle length of PCOS women is 41 days and of the Healthy women is 33 days. 91.4% of cycle length is within 40 days for the Healthy group, while it decreases to 71.9% for the PCOS group. This means PCOS women have a longer menstrual cycle and more variation during the cycle. With more variation, the ovulation prediction becomes more difficult for the PCOS group. The deviation between the LH surge day and the predicted ovulation day, calculated by the starting day of the next menstruation minus 14 days, is greater in the PCOS group compared with the Healthy group. Also, 46.96% of PCOS women have an irregular cycle, and only 19.25% of healthy women show an irregular cycle. Conclusion: PCOS women have longer menstrual cycles and more variation during the menstrual cycles. The traditional ovulation prediction is not suitable for PCOS women.

Keywords: menstrual cycle, PCOS, urinary luteinizing hormone, Mira

Procedia PDF Downloads 172
3657 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 109
3656 Study of Relation between P53 and Mir-146a Rs2910164 Polymorphism in Cervical Lesion

Authors: Hossein Rassi, Marjan Moradi Fard, Masoud Houshmand

Abstract:

Background: Cervical cancer is multistep disease that is thought to result from an interaction between genetic background and environmental factors. Human papillomavirus (HPV) infection is the leading risk factor for cervical intraepithelial neoplasia(CIN)and cervical cancer. In other hand, some of p53 and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of p53 genotypes and miR-146a rs2910164 polymorphism in cervical lesions. Method: Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33 and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of P53 and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical lesions in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. Conclusion: The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.

Keywords: cervical cancer, p53, miR-146a, rs2910164, polymorphism

Procedia PDF Downloads 462
3655 Investigation p53 and miR-146a rs2910164 Polymorphism in Cervical Lesion

Authors: Hossein Rassi, Marjan Moradi fard, Masoud Houshmand

Abstract:

Background: Cervical cancer is multistep disease that is thought to result from an interaction between genetic background and environmental factors. Human Papillomavirus (HPV) infection is the leading risk factor for Cervical Intraepithelial Neoplasia (CIN) and cervical cancer. In other hand, some of p53 and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of p53 genotypes and miR-146a rs2910164 polymorphism in cervical lesions. Method: Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33, and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of P53 and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99 bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical lesions in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. Conclusion: The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.

Keywords: cervical cancer, miR-146a rs2910164 polymorphism, p53 polymorphism, intraepithelial, neoplasia, HPV

Procedia PDF Downloads 394
3654 Mobulid Ray Post-Release Mortality to Assess the Feasibility of Live-Release Management Measures

Authors: Sila K. Sari, Betty J.L. Laglbauer, Muhammad G. Salim, Irianies C. Gozali, Iqbal Herwata, Fahmi Fahmi, Selvia Oktaviyani, Isabel Ender, Sarah Lewis, Abraham Sianipar, Mark Erdmann

Abstract:

Taking strides towards the sustainable use of marine stocks requires science-based management of target fish populations and reduction of bycatch in non-selective fisheries. Among elasmobranchs, mobulid rays are faced with high extinction risk due to intrinsic vulnerability to fishing and their conservation has been recognized as a strong priority both in Indonesia and worldwide. Despite their common vulnerabilities to fishing pressure due to slow growth, late maturation and low fecundity, only manta rays, but not devil rays, are protected in Indonesian waters. However, both manta and devil rays are captured in non-selective fisheries, in particular drift gillnets, since their habitat overlaps with fishing grounds for primary target species (e.g. marlin, swordfish and bullet tuna off the coast of Muncar). For this reason, mobulid populations are being heavily impacted, and while national-level protections are crucial to help conservation, they may not suffice alone to insure populations sustainability. In order to assess the potential of applying live-release management measures to conserve mobulids captured as bycatch in drift gillnets, we deployed pop-up survival archival transmitters to assess post-release mortality in Indonesian mobulid rays. We also assessed which fishing practices, in particular, soak duration, affected post-release mortality in order to draw relevant conclusions for management.

Keywords: Mobulid, Devil ray, Manta ray, Bycatch

Procedia PDF Downloads 160
3653 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 100
3652 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 67
3651 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience

Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi

Abstract:

Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.

Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit

Procedia PDF Downloads 121
3650 Effect of Bacillus thuringiensis israelensis against Culex pipiens (Insect: Culicidae) Effect of Bti on Two Non-Target Species Eylais hamata (Acari: Hydrachnidia) and Physa marmorata (Gastropoda: Physidae) and Dosage of Their GST Biomarker

Authors: Meriem Mansouri, Fatiha Bendali Saoudi, Noureddine Soltani

Abstract:

Biological control presents a means of control for the protection of the environment. Bacillus thuringiensis israelensis Berliner 1915 is an inseticide of biological origin because it is a bacterium of the Bacillaceae family. This biocide has a biological importance, because of its specific larvicidal action against Culicidae, blood-sucking insects, responsible for several diseases to humans and animals through the world. As well as, its high specificity for these insects. Also, the freshwater mites, this necessarily parasitic group for aquatic species such as the Physidae, also have an effective biological control against the Culicidae, because of their voracious predation to the larvae of these insects. The present work aims to study the effects of the biocide Bacillus thuringiensis var israelinsis, against non-target adults of water mites Eylais hamata Koenike, 1897, as well as its associated host species Physa marmorata Fitzinger, 1833. After 12 days of oral treatment of adults with lethal concentration (LC50:0.08µg/ml), determined from essays on 4th instar larvae of Culex pipiens (hematophagous insects). No adverse effect has been recorded for adult individuals of Eylais hamata, contrary, snail Physa marmorata were sensitive for this dose of Bti. In parallel, after treatment at the Bti by LC50, the enzyme stress bio marker glutathione S-transferase, was measured after 24, 48 and 72 hours. The enzymatic activity of GST has increased after 24 and 48 hours following treatment.

Keywords: biological control, Bacillus thuringiensis var israelinsis, culicidae, hydrachnidia, enzymatic activity

Procedia PDF Downloads 646
3649 Repositioning Sodium Valproate for Amelioration of Bleomycin-induced Scleroderma: The Role of Oxidative Stress, Transforming Growth Factor Beta-1, and the Mammalian Target of Rapamycin

Authors: Ahmed M. Kabel, Maaly A. Abd Elmaaboud

Abstract:

Scleroderma is one of the connective tissue disorders characterized by skin and systemic fibrosis. Its pathogenesis involves multiple interrelated processes of autoimmunity, vasculopathy, inflammation, and oxidative stress. This study was a trial to explore the possible ameliorative effects of sodium valproate on an experimental model of skin fibrosis induced by bleomycin. Forty male BALB/c mice were divided into four equal groups as follows: control group; bleomycin group; bleomycin + sodium valproate group, and sodium valproate group. Mice were assessed for their body weight every four days throughout the whole study. Skin tissues were used to evaluate the oxidative stress parameters, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin 15, and mammalian target of rapamycin (mTOR). Skin fibrosis was evaluated by measuring dermal thickness and staining the skin tissues with Masson trichrome stain. Also, the skin tissues were immunostained with alpha smooth muscle actin (α-SMA). Administration of sodium valproate to bleomycin-treated mice resulted in the restoration of the body weight with a significant decrease in the dermal thickness, amelioration of oxidative stress, suppression of TGF-β1 and mTOR expression, and significant reduction of the percentage of α-SMA immunostaining and the proinflammatory cytokine levels compared to mice treated with bleomycin alone. In conclusion, sodium valproate has an antifibrotic effect on skin fibrosis which may represent a beneficial therapeutic modality for the management of scleroderma.

Keywords: scleroderma, bleomycin, sodium valproate, skin fibrosis

Procedia PDF Downloads 77
3648 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods

Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough

Abstract:

The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.

Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation

Procedia PDF Downloads 490
3647 Characterizing Multivariate Thresholds in Industrial Engineering

Authors: Ali E. Abbas

Abstract:

This paper highlights some of the normative issues that might result by setting independent thresholds in risk analyses and particularly with safety regions. A second objective is to explain how such regions can be specified appropriately in a meaningful way. We start with a review of the importance of setting deterministic trade-offs among target requirements. We then show how to determine safety regions for risk analysis appropriately using utility functions.

Keywords: decision analysis, thresholds, risk, reliability

Procedia PDF Downloads 306
3646 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 149
3645 Role of P53 Codon 72 Polymorphism and Mir-146a Rs2910164 Polymorphism in Cervical Cancer

Authors: Hossein Rassi, Marjan Moradi Fard, Masoud Houshmand

Abstract:

Background: Cervical cancer is multistep disease that is thought to result from an interaction between genetic background and environmental factors. Human papillomavirus (HPV) infection is the leading risk factor for cervical intraepithelial neoplasia (CIN) and cervical cancer. In other hand, some of p53 and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of p53 genotypes and miR-146a rs2910164 polymorphism in cervical lesions. Method: Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33 and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of P53 and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical lesions in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. Conclusion: The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.

Keywords: cervical cancer, HPV18, p53 codon 72 polymorphism, miR-146a rs2910164 polymorphism

Procedia PDF Downloads 452
3644 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 104
3643 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 231
3642 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 50
3641 A Sub-Conjunctiva Injection of Rosiglitazone for Anti-Fibrosis Treatment after Glaucoma Filtration Surgery

Authors: Yang Zhao, Feng Zhang, Xuanchu Duan

Abstract:

Trans-differentiation of human Tenon fibroblasts (HTFs) to myo-fibroblasts and fibrosis of episcleral tissue are the most common reasons for the failure of glaucoma filtration surgery, with limited treatment options like antimetabolites which always have side-effects such as leakage of filter bulb, infection, hypotony, and endophthalmitis. Rosiglitazone, a specific thiazolidinedione is a synthetic high-affinity ligand for PPAR-r, which has been used in the treatment of type2 diabetes, and found to have pleiotropic functions against inflammatory response, cell proliferation and tissue fibrosis and to benefit to a variety of diseases in animal myocardium models, steatohepatitis models, etc. Here, in vitro we cultured primary HTFs and stimulated with TGF- β to induced myofibrogenic, then treated cells with Rosiglitazone to assess for fibrogenic response. In vivo, we used rabbit glaucoma model to establish the formation of post- trabeculectomy scarring. Then we administered subconjunctival injection with Rosiglitazone beside the filtering bleb, later protein, mRNA and immunofluorescence of fibrogenic markers are checked, and filtering bleb condition was measured. In vitro, we found Rosiglitazone could suppressed proliferation and migration of fibroblasts through macroautophagy via TGF- β /Smad signaling pathway. In vivo, on postoperative day 28, the mean number of fibroblasts in Rosiglitazone injection group was significantly the lowest and had the least collagen content and connective tissue growth factor. Rosiglitazone effectively controlled human and rabbit fibroblasts in vivo and in vitro. Its subconjunctiiva application may represent an effective, new avenue for the prevention of scarring after glaucoma surgery.

Keywords: fibrosis, glaucoma, macroautophagy, rosiglitazone

Procedia PDF Downloads 262
3640 Prediction of Endotracheal Tube Size in Children by Predicting Subglottic Diameter Using Ultrasonographic Measurement versus Traditional Formulas

Authors: Parul Jindal, Shubhi Singh, Priya Ramakrishnan, Shailender Raghuvanshi

Abstract:

Background: Knowledge of the influence of the age of the child on laryngeal dimensions is essential for all practitioners who are dealing with paediatric airway. Choosing the correct endotracheal tube (ETT) size is a crucial step in pediatric patients because a large-sized tube may cause complications like post-extubation stridor and subglottic stenosis. On the other hand with a smaller tube, there will be increased gas flow resistance, aspiration risk, poor ventilation, inaccurate monitoring of end-tidal gases and reintubation may also be required with a different size of the tracheal tube. Recent advancement in ultrasonography (USG) techniques should now allow for accurate and descriptive evaluation of pediatric airway. Aims and objectives: This study was planned to determine the accuracy of Ultrasonography (USG) to assess the appropriate ETT size and compare it with physical indices based formulae. Methods: After obtaining approval from Institute’s Ethical and Research committee, and parental written and informed consent, the study was conducted on 100 subjects of either sex between 12-60 months of age, undergoing various elective surgeries under general anesthesia requiring endotracheal intubation. The same experienced radiologist performed ultrasonography. The transverse diameter was measured at the level of cricoids cartilage by USG. After USG, general anesthesia was administered using standard techniques followed by the institute. An experienced anesthesiologist performed the endotracheal intubations with uncuffed endotracheal tube (Portex Tracheal Tube Smiths Medical India Pvt. Ltd.) with Murphy’s eye. He was unaware of the finding of the ultrasonography. The tracheal tube was considered best fit if air leak was satisfactory at 15-20 cm H₂O of airway pressure. The obtained values were compared with the values of endotracheal tube size calculated by ultrasonography, various age, height, weight-based formulas and diameter of right and left little finger. The correlation of the size of the endotracheal tube by different modalities was done and Pearson's correlation coefficient was obtained. The comparison of the mean size of the endotracheal tube by ultrasonography and by traditional formula was done by the Friedman’s test and Wilcoxon sign-rank test. Results: The predicted tube size was equal to best fit and best determined by ultrasonography (100%) followed by comparison to left little finger (98%) and right little finger (97%) and age-based formula (95%) followed by multivariate formula (83%) and body length (81%) formula. According to Pearson`s correlation, there was a moderate correlation of best fit endotracheal tube with endotracheal tube size by age-based formula (r=0.743), body length based formula (r=0.683), right little finger based formula (r=0.587), left little finger based formula (r=0.587) and multivariate formula (r=0.741). There was a strong correlation with ultrasonography (r=0.943). Ultrasonography was the most sensitive (100%) method of prediction followed by comparison to left (98%) and right (97%) little finger and age-based formula (95%), the multivariate formula had an even lesser sensitivity (83%) whereas body length based formula was least sensitive with a sensitivity of 78%. Conclusion: USG is a reliable method of estimation of subglottic diameter and for prediction of ETT size in children.

Keywords: endotracheal intubation, pediatric airway, subglottic diameter, traditional formulas, ultrasonography

Procedia PDF Downloads 236
3639 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)

Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri

Abstract:

Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.

Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase

Procedia PDF Downloads 224
3638 Anti-Prostate Cancer Effect of GV-1001, a Novel Gonadotropin-Releasing Hormone Receptor Ligand

Authors: Ji Won Kim, Moo Yeol Lee, Keon Wook Kang

Abstract:

GV-1001, 16 amino acid fragment of human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable cancer vaccine for many types of solid tumors showing high-level of telomerase activity. In the present study, we evaluated the anti-cancer effect of GV-1001 on androgen-receptor-positive prostate cancer. Two signaling pathways, Gs-adenylate cyclase-cAMP and Gq-IP3-Ca2+ pathways play a central role in GnRH receptor (GnRHR)-mediated activities. We found that leuprolide acetate (LA) mainly acted on Gq-mediated Ca2+ signaling, while GV-1001 preferentially acted on cAMP signaling; and both the effects were counteracted by cetrorelix, a GnRHR antagonist. We further tested whether GV-1001 affects tumor growth of human prostate cancer cells in vivo. Prostate tumor xenografts were established using LNCap, androgen receptor-positive prostate cancer cells, and the nude mice bearing tumors were subcutaneously injected with GV-1001 (0.01, 0.1, 1, 10 microg/kg/day) and LA (0.01 microg/kg/day) for 2 weeks. GV-1001 (1 and 10 microg/kg/day) significantly inhibited tumor growth of LNCap xenografts. Interestingly, mRNA expression of MMP2 and MMP9 was significantly suppressed by GV-1001 injection, but not by LA administration. Boyden chamber assay revealed that GV-1001 potently inhibited cell migration of LNCap. Our finding suggests that GV-1001 as a novel GnRHR ligand, has anti-proliferative and anti-migratory effects on androgen receptor-positive prostate cancer cells.

Keywords: GV-1001, GnRH, hTERT, prostate cancer

Procedia PDF Downloads 359
3637 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 141
3636 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration

Authors: Danny Barash

Abstract:

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.

Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods

Procedia PDF Downloads 231
3635 In vitro Skin Model for Enhanced Testing of Antimicrobial Textiles

Authors: Steven Arcidiacono, Robert Stote, Erin Anderson, Molly Richards

Abstract:

There are numerous standard test methods for antimicrobial textiles that measure activity against specific microorganisms. However, many times these results do not translate to the performance of treated textiles when worn by individuals. Standard test methods apply a single target organism grown under optimal conditions to a textile, then recover the organism to quantitate and determine activity; this does not reflect the actual performance environment that consists of polymicrobial communities in less than optimal conditions or interaction of the textile with the skin substrate. Here we propose the development of in vitro skin model method to bridge the gap between lab testing and wear studies. The model will consist of a defined polymicrobial community of 5-7 commensal microbes simulating the skin microbiome, seeded onto a solid tissue platform to represent the skin. The protocol would entail adding a non-commensal test organism of interest to the defined community and applying a textile sample to the solid substrate. Following incubation, the textile would be removed and the organisms recovered, which would then be quantitated to determine antimicrobial activity. Important parameters to consider include identification and assembly of the defined polymicrobial community, growth conditions to allow the establishment of a stable community, and choice of skin surrogate. This model could answer the following questions: 1) is the treated textile effective against the target organism? 2) How is the defined community affected? And 3) does the textile cause unwanted effects toward the skin simulant? The proposed model would determine activity under conditions comparable to the intended application and provide expanded knowledge relative to current test methods.

Keywords: antimicrobial textiles, defined polymicrobial community, in vitro skin model, skin microbiome

Procedia PDF Downloads 129
3634 Evaluation Means in English and Russian Academic Discourse: Through Comparative Analysis towards Translation

Authors: Albina Vodyanitskaya

Abstract:

Given the culture- and language-specific nature of evaluation, this phenomenon is widely studied around the linguistic world and may be regarded as a challenge for translators. Evaluation penetrates all the levels of a scientific text, influences its composition and the reader’s attitude towards the information presented. One of the most challenging and rarely studied phenomena is the individual style of the scientific writer, which is mostly reflected in the use of evaluative language means. The evaluative and expressive potential of a scientific text is becoming more and more welcoming area for researchers, which stems in the shift towards anthropocentric paradigm in linguistics. Other reasons include: the cognitive and psycholinguistic processes that accompany knowledge acquisition, a genre-determined nature of a scientific text, the increasing public concern about the quality of scientific papers and some such. One more important issue, is the fact that linguists all over the world still argue about the definition of evaluation and its functions in the text. The author analyzes various approaches towards the study of evaluation and scientific texts. A comparative analysis of English and Russian dissertations and other scientific papers with regard to evaluative language means reveals major differences and similarities between English and Russian scientific style. Though standardized and genre-specific, English scientific texts contain more figurative and expressive evaluative means than the Russian ones, which should be taken into account while translating scientific papers. The processes that evaluation undergoes while being expressed by means of a target language are also analyzed. The author offers a target-language-dependent strategy for the translation of evaluation in English and Russian scientific texts. The findings may contribute to the theory and practice of translation and can increase scientific writers’ awareness of inter-language and intercultural differences in evaluative language means.

Keywords: academic discourse, evaluation, scientific text, scientific writing, translation

Procedia PDF Downloads 351
3633 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 351