Search results for: low voltage power cable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6898

Search results for: low voltage power cable

5578 Wind Power Assessment for Turkey and Evaluation by APLUS Code

Authors: Ibrahim H. Kilic, A. B. Tugrul

Abstract:

Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.

Keywords: APLUS, energy policy, renewable energy, wind power, Turkey

Procedia PDF Downloads 299
5577 The Impact of the Constitution of Myanmar on the Political Power of Aung San Suu Kyi and the Rohingya Conflict

Authors: Nur R. Daut

Abstract:

The objective of this paper is to offer an insight on how political power inequality has contributed and exacerbated the political violence towards the Rohingya ethnic group in Myanmar. In particular, this paper attempts to illustrate how power inequality in the country has prevented Myanmar’s leader Aung San Suu Kyi from taking effective measures on the issue. The research centers on the question of why Aung San Suu Kyi has been seen as not doing enough to stop the persecution of the Rohingya ethnic group ever since she was appointed the State Counsellor to the Myanmar government. As a Nobel Peace Prize laureate, Suu Kyi’s lack of action on the matter has come under severe criticism by the international community. Many have seen this as Suu Kyi’s failure to establish democracy and allowing mass killing to spread in the country. The real question that many perhaps should be asking, however, is how much power Suu Kyi actually holds within the government which is still heavily controlled by the military or Tatmadaw. This paper argues that Suu Kyi’s role within the government is limited which hinders constructive and effective measures to be taken on the Rohingya issue. Political power in this research is being measured by 3 factors: control over events such as burning of Rohingya villages, control over resources such as land ownership and media and control over actors such the Tatmadaw, police force and civil society who are greatly needed to ease and resolve the conflict. In order to illustrate which individuals or institution have control over all the 3 above factors, this paper will first study the constitution of Myanmar. The constitution will also be able to show the asymmetrical power relations as it will provide evidence as to how much political power Suu Kyi holds within the government in comparison to other political actors and institutions. Suu Kyi’s role as a state counsellor akin to a prime minister is a newly created position as the current constitution of Myanmar bars anyone with a foreign spouse from holding the post of a president in the country. This is already an indication of the inequality of political power between Suu Kyi and the military. Apart from studying the constitution of Myanmar, Suu Kyi’s speeches and various interviews are also studied in order to answer the research question. Unfortunately, Suu Kyi’s limited political power also involves the Buddhist monks in Myanmar who have held significant influence throughout the history of the country. This factor further prevents Suu Kyi from preserving the sanctity of human rights in Myanmar.

Keywords: Aung San Suu Kyi, constitution of Myanmar, inequality, political power, political violence, Rohingya, Tatmadaw

Procedia PDF Downloads 109
5576 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 142
5575 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method

Authors: Yan-Ting Lin, Wei-Nian Su

Abstract:

The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.

Keywords: vertical axis wind turbine, CFD, DOE, VAWT

Procedia PDF Downloads 435
5574 Genetic Variation of Autosomal STR Loci from Unrelated Individual in Iraq

Authors: H. Imad, Q. Cheah, J. Mohammad, O. Aamera

Abstract:

The aim of this study is twofold. One is to determine the genetic structure of Iraq population and the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. Twenty STR loci and Amelogenin including D3S1358, D13S317, PentaE, D16S539, D18S51, D2S1338, CSF1PO, Penta D, THO1, vWA, D21S11, D7S820, TPOX, D8S1179, FGA, D2S1338, D5S818, D6S1043, D12S391, D19S433, and Amelogenin amplified by using power plex21® kit. PCR products detected by genetic analyzer 3730xL then data analyzed by PowerStatsV1.2. Based on the allelic frequencies, several statistical parameters of genetic and forensic efficiency have been estimated. This includes the homozygosity and heterozygosity, effective number of alleles (n), the polymorphism information content (PIC), the power of discrimination (DP), and the power of exclusion (PE). The power of discrimination values for all tested loci was from 75% to 96% therefore, those loci can be safely used to establish a DNA-based database for Iraq population.

Keywords: autosomal STR, genetic variation, Middle and South of Iraq, statistical parameters

Procedia PDF Downloads 380
5573 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: thermo electric generator, LED, converts, temperature

Procedia PDF Downloads 140
5572 The Spectral Power Amplification on the Regular Lattices

Authors: Kotbi Lakhdar, Hachi Mostefa

Abstract:

We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.

Keywords: ising model, phase transitions, critical temperature, critical exponent, spectral power amplification

Procedia PDF Downloads 305
5571 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage

Procedia PDF Downloads 252
5570 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 126
5569 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045

Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt

Abstract:

To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.

Keywords: 100% renewable electricity, California, capacity expansion, mixed integer non-linear programming

Procedia PDF Downloads 167
5568 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 231
5567 Knowledge, Technology and Empowerment in Contemporary Scenario

Authors: Samir Roy

Abstract:

This paper investigates the relationship among knowledge, technology, and empowerment. In Physics power is defined as rate of doing work. In everyday use, the meaning of the word power is related to the capacity to bring change of value in the world. It appears that the popular aphorism “Knowledge is power” should be revisited in the context of contemporary states of affairs. For instance, classical mechanics is a system of knowledge, so also thermodynamics. But neither of them, per se, is sufficient to produce automobilin es. Boolean algebra, the logical foundation of digital electronic computers, was introduced by George Boole in 1847. But that knowledge was practically useless for almost one hundred years until digital electronics was developed in early twentieth century, which eventually led to invention of digital electronic computers. Empowerment of women is a burning issue in the arena of social justice. However, if we carefully analyze the functional elements of women’s empowerment, we find them to be highly technology driven as well as technology dependent in real life. On the other hand, technology has empowered modern states to maintain social order and promote democracy in an effective manner. This paper includes a few case studies to establish the close correspondence between knowledge, especially scientific knowledge, technology, and empowerment. It appears that in contemporary scenario, “Technology is power” is a more appropriate statement than the traditional aphorism “Knowledge is power”.

Keywords: knowledge, science, technology, empowerment, change, social justice

Procedia PDF Downloads 31
5566 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 106
5565 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 168
5564 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 500
5563 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 360
5562 Residual Power Series Method for System of Volterra Integro-Differential Equations

Authors: Zuhier Altawallbeh

Abstract:

This paper investigates the approximate analytical solutions of general form of Volterra integro-differential equations system by using the residual power series method (for short RPSM). The proposed method produces the solutions in terms of convergent series requires no linearization or small perturbation and reproduces the exact solution when the solution is polynomial. Some examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons with the Laplace decomposition algorithm verify that the new method is very effective and convenient for solving system of pantograph equations.

Keywords: integro-differential equation, pantograph equations, system of initial value problems, residual power series method

Procedia PDF Downloads 416
5561 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration

Authors: Mohammad Reza Esmaili

Abstract:

One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.

Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto

Procedia PDF Downloads 58
5560 Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors

Authors: Wei-Chou Hsu, Ching-Sung Lee, Han-Yin Liu

Abstract:

This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed.

Keywords: AlGaN/GaN, Al2O3, hysteresis effect, drift effect, reliability, passivation, pH sensors

Procedia PDF Downloads 317
5559 The Covid-19 Pandemic: Transmission, Misinformation, and Implications on Public Health

Authors: Jonathan De Rothewelle

Abstract:

A pandemic, such as that of COVID-19, can be a time of panic and stress; concerns about health supersede others such as work and leisure. With such concern comes the seeking of crucial information— information that, during a global health crisis, could mean the difference between life and death. Whether newspapers, cable news, or radio, media plays an important role in the transmission of medical information to the general public. Moreover, the news media in particular must uphold its obligation to the public to only disseminate factual, useful information. The circulation of misinformation, whether explicit or implicit, may profoundly impact global health. Using a discursive analytic framework founded in linguistics, the images and headlines of top coverage of COVID-19 from the most influential media outlets will be examined. Micro-analyses reveal what may be interpreted as evidence of sensationalism, which may be argued to a form of misinformation, and ultimately a departure from ethical media. Withdrawal from responsible reporting and publishing, expressly in times of epidemic, may cause further confusion and panic.

Keywords: public health, pandemic, public education, media

Procedia PDF Downloads 144
5558 Strategy of Balancing in Russian Energy Diplomacy toward Middle East

Authors: Davood Karimipour

Abstract:

Since long ago, Russia has been one of the most influential actors in regional equations in South West Asia. The geographic affinity of its vital interests with Western Asia has caused Moscow to have a high sensitivity to the balance of power in the Middle East, as its role in the Syrian crisis clearly demonstrated the importance. In recent years, Moscow has tried to use the energy diplomacy tool in maintaining the balance of power between the major powers in the region. The paper, based on the qualitative case study method, investigates how Russia’s energy diplomacy plays a role in the balance of regional forces in the Middle East, studying the country’s conduct towards Iran, Saudi Arabia, Turkey, and Israel. The hypothesis presented that Russia, using energy tools, is trying to push the regional powers toward cooperation in order to increase the influence in the region, increase power in global markets, and controlling the US to restore power balance in the region. Its cooperation in the Iranian gas industry, the country’s relations with Saudis in the framework of OPEC, cooperation with the Turkish Kurds and the presence in the Israeli gas industry are an example of these Russian energy diplomacy initiatives in West Asia, which is the common point of the Moscow approach to South West Asia.

Keywords: Russia, balance of power, energy diplomacy, Middle East

Procedia PDF Downloads 160
5557 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 302
5556 The Concentration Analysis of CO2 Using ALOHA Code for Kuosheng Nuclear Power Plant

Authors: W. S. Hsu, Y. Chiang, H. C. Chen, J. R. Wang, S. W. Chen, J. H. Yang, C. Shih

Abstract:

Not only radiation materials, but also the normal chemical material stored in the power plant can cause a risk to the residents. In this research, the ALOHA code was used to perform the concentration analysis under the CO2 storage burst or leakage conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and data were used in this study. Additionally, the analysis results of ALOHA code were compared with the R.G. 1.78 failure criteria in order to confirm the control room habitability. The comparison results show that the ALOHA result for burst case was 0.923 g/m3 which was below the criteria. However, the ALOHA results for leakage case was 11.3 g/m3.

Keywords: BWR, ALOHA, habitability, Kuosheng

Procedia PDF Downloads 346
5555 Competitive Condition and Market Power of Islamic Banks in Indonesia

Authors: Cupian

Abstract:

The expansion of Islamic banking industry seems to emphasize the banking competition in Indonesia where conventional and Islamic banks coexist. In addition, the 2007/2008 global financial crisis and deregulation have the effect on competitive conditions in Islamic banking market. In this context, this study aims at investigating competitive conditions and market power of Islamic banks in Indonesia using firm level data over the period 2006-2013. The study also attempts to identify the factors that represent the power of banking market to better study the degree of competition in this banking industry. Using samples of 27 Islamic commercial banks, the study uses a variety of structural and non-structural measures related to the traditional approach and the new empirical approach of the industrial organization (NEIO). The methodology is based on the set of measures of the competition and market power. The first measure is a set of concentration ratios (CR4) and Herfindahl-Hirschman index (HHI).The second measures are the Panzar and Ross H-statistic and the Lerner index based on econometric estimations with the aim of evaluating the market structure and measuring its power in terms of price setting. The results of the competition analysis suggest that the Islamic banking markets in Indonesia cannot be characterized by the bipolar cases of either perfect competition or monopoly over 2006-2013. That is, banks earned their revenues operating under conditions of monopolistic competition in that period. Overall, Islamic banks in Indonesia operate in a relatively less competitive environment or in high market power. It is also indicated that Islamic bank that hope to achieve higher returns should operate in the competitive environment.

Keywords: bank competition, islamic banks, market structure, profitability

Procedia PDF Downloads 284
5554 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 64
5553 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 503
5552 Pastoral Power, Early Modern Insurrections, and Contemporary Carelessness: What Foucault Can Teach Us about the “Crisis of Care”

Authors: Lucile Richard

Abstract:

Contemporary thinkers studying biopolitics and its lethal logic find little interest in Foucault's "vague sketch of the pastorate.” Despite pastoral power being depicted as the matrix of governmentality in the genealogy of biopower, most post-Foucauldian theorists disregard its study. Sovereign power takes precedence in the examination of the governmental connection between care, violence, and death. Questioning this recurring motif, this article advocates for a feminist exploration of pastoral power. It argues that giving attention to the genealogy of the pastorate is essential to account for the carelessness that runs today's politics. Examining Foucault's understanding of this "power to care" uncovers the link between care work and politics, a facet of governmentality often overlooked in sovereignty-centered perspectives. His description of “pastoral insurrections”, in so far as it highlights that caring, far from being excluded from politics, is the object of competing problematizations, also calls for a more nuanced and complex comprehension of the politicization of care and care work than the ones developed by feminist theorists. As such, it provides an opportunity to delve into under-theorized dimensions of the "care crisis" in feminist accounts. On one hand, it reveals how populations are disciplined and controlled, not only through caregiving obligations, but also through being assigned or excluded from receiving care. On the other, it stresses that the organization of the public sphere is just as important as the organization of the private sphere, which is the main focus for most feminists, in preventing marginalized perspectives on caring from gaining political momentum.

Keywords: Foucault, feminist theory, resistance, pastoral power, crisis of care, biopolitics

Procedia PDF Downloads 44
5551 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia PDF Downloads 171
5550 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation

Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap

Abstract:

The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.

Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance

Procedia PDF Downloads 313
5549 Energy-Dense and High-Power Li-Cl₂/I₂ Batteries by Reversible Chemical Bonds

Authors: Pei Li, Chunyi Zhi

Abstract:

Conversion-type lithium-ion batteries show great potential as high-energy-density, low-cost and sustainable alternatives to current transition-metal-based intercalation cells. Li-Cl₂/Li⁻I₂ conversion batteries, based on anionic redox reactions of Cl⁻/Cl⁰ or I⁻/I⁰, are highly attractive due to their superior voltage and capacity. However, a redox-active and reversible chlorine cathode has not been developed in organic electrolytes. And thermodynamic instability and shuttling issues of iodine cathodes have plagued the active iodine loading, capacity retention and cyclability. By reversible chemical bonds, we develop reversible chlorine redox reactions in organic electrolytes with interhalogen bonds between I and Cl for Li-I₂ batteries and develop a highly thermally stable I/I₃--bonded organic salts with iodine content up to 80% as cathode materials for the rechargeable Li-I₂ batteries. The demonstration of reversible chemical bonds enabled rechargeable Li-halogen batteries opens a new avenue to develop halogen compound cathodes.

Keywords: conversion-type, chlorine, halogen cathode, high energy density, iodine, interhalogen bond, lithium-ion batteries

Procedia PDF Downloads 77