Search results for: heterogeneous networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3477

Search results for: heterogeneous networks

2157 Impact of Information Technology Systems on the Recruitment Process in Morocco

Authors: Brahim Bellali, Fatima Bellali

Abstract:

The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of information technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.

Keywords: IT systems, recruitment, challenges, constraints

Procedia PDF Downloads 13
2156 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 271
2155 Impact of Information Technology Systems on the Recruitment Process in Morocco

Authors: Bellali Brahim, Bellali Fatima

Abstract:

The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of nformation technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.

Keywords: IT systems, recruitment, challenges, constraints

Procedia PDF Downloads 27
2154 Effect of the Nature of the Precursor on the Performance of Cu-Mn Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Krasimir Ivanov

Abstract:

The catalytic oxidation of methanol to formaldehyde is an important industrial process in which the waste gas in addition to CO contains methanol and dimethyl ether (DME). Evaluation of the possibility of removing the harmful components from the exhaust gasses needs a more complex investigation. Our previous work indicates that supported Cu-Mn oxide catalysts are promising for effective deep oxidation of these compounds. This work relates to the catalyst, comprising copper-manganese spinel, coated on carrier γ-Al₂O₃. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. Different organometallic compounds on the base of four natural amino acids (Glycine, Alanine, Valine, Leucine) as precursors were used for the preparation of catalysts with Cu/Mn molar ratio 1:5. X-Ray and TEM analysis were performed on the catalyst’s bulk, and surface composition and the specific surface area was determined by BET method. The results obtained show that the activity of the catalysts increase up to 40% although there are some specific features, depending on the nature of the amino acid and the oxidized compound.

Keywords: Cu-Mn/γ-Al₂O₃, CO and VOCs oxidation, heterogeneous catalysis, amino acids

Procedia PDF Downloads 240
2153 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 394
2152 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 330
2151 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 471
2150 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 473
2149 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta

Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati

Abstract:

DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.

Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta

Procedia PDF Downloads 165
2148 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 155
2147 Product Line Design with Customization in the Presence of Demand Uncertainty

Authors: Parisa Bagheri Tookanlou

Abstract:

In this paper, we analyze a product line design problem faced by a manufacturing firm where the product line consists of a customized product in addition to a standard product and is offered in a market in which customers are heterogeneous on aesthetic attributes of the product. The customization level of a product is defined by the fraction of aesthetic attributes of the product that the manufacturer chooses to customize. In contrast to the existing literature on product line design that predominantly assumes deterministic demand, we consider the presence of demand uncertainty and frame the product line design problem in a single period (news vendor) setting. We examine the effect of demand uncertainty on product line decisions. Furthermore, we also examine how product line decisions are influenced by channel structure. While we use the centralized channel as a benchmark, we consider the decentralized dual channel where the customized product is sold through an online channel owned by the manufacturer and the standard product is sold through a retailer. We introduce a supply contract between the manufacturer and the retailer for improving channel efficiency and coordinate the distribution channel.

Keywords: product line design, demand uncertainty, customization level, distribution channel

Procedia PDF Downloads 187
2146 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration

Authors: Wei-Song Hung

Abstract:

We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.

Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)

Procedia PDF Downloads 296
2145 Heritage Tourism Balance between Historic Culture and Marketing Innovation: The Case Study of Taiwan

Authors: Lin Chih-Ken

Abstract:

This paper explores the A Li Shan hotel of Taiwan during the Japanese occupation period, after over a hundred years of time, it has been handed over to the hotel managing enterprise to retain the historic building and the culture. Applying the innovative marketing strategies, coordinate the local government traveling policy then combined local tea agriculture and forestry specialty integrated marketing, to create the special hotel located in the Alishan National Scenic Area with the characteristics of landscape, innovative marketing and history, to attract domestic tourism and visitors around the world. This study interview the hotel owner, managers, employees and guests, in addition to collected message feedback from reservation website, to apply Ambidexterity Marketing Theory and Resource Base Theory to analyze the main impact factors. The conclusion showed that the integration of several key factors and make good use of resource strength generate heterogeneous product characteristics to attracting wider range of visitors.

Keywords: heritage tourism, historic hotel, marketing ambidexterity, resource base theory

Procedia PDF Downloads 266
2144 Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium

Authors: Radha H. R., Krupakara P. V.

Abstract:

Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy.

Keywords: aluminium 6061, corrosion, quartz, vortex

Procedia PDF Downloads 409
2143 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 92
2142 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 161
2141 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 246
2140 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing

Authors: H. Parveen Begam, M. A. Maluk Mohamed

Abstract:

Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.

Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA

Procedia PDF Downloads 398
2139 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images

Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang

Abstract:

Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.

Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning

Procedia PDF Downloads 11
2138 Age-Dependent Anatomical Abnormalities of the Amygdala in Autism Spectrum Disorder and their Implications for Altered Socio-Emotional Development

Authors: Gabriele Barrocas, Habon Issa

Abstract:

The amygdala is one of various brain regions that tend to be pathological in individuals with autism spectrum disorder (ASD). ASD is a prevalent and heterogeneous developmental disorder affecting all ethnic and socioeconomic groups and consists of a broad range of severity, etiology, and behavioral symptoms. Common features of ASD include but are not limited to repetitive behaviors, obsessive interests, and anxiety. Neuroscientists view the amygdala as the core of the neural system that regulates behavioral responses to anxiogenic and threatening stimuli. Despite this consensus, many previous studies and literature reviews on the amygdala’s alterations in individuals with ASD have reported inconsistent findings. In this review, we will address these conflicts by highlighting recent studies which reveal that anatomical and related socio-emotional differences detected between individuals with and without ASD are highly age-dependent. We will specifically discuss studies using functional magnetic resonance imaging (fMRI), structural MRI, and diffusion tensor imaging (DTI) to provide insights into the neuroanatomical substrates of ASD across development, with a focus on amygdala volumes, cell densities, and connectivity.

Keywords: autism, amygdala, development, abnormalities

Procedia PDF Downloads 125
2137 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 188
2136 LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia

Authors: Adenike Adesanya, Nonthaphat Wong, Xiang-Yun Lan, Shea Ping Yip, Chien-Ling Huang

Abstract:

Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs.

Keywords: chronic myeloid leukemia, imatinib resistance, lncRNA-miRNA-mRNA, T315I mutation

Procedia PDF Downloads 160
2135 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems

Procedia PDF Downloads 267
2134 ADP Approach to Evaluate the Blood Supply Network of Ontario

Authors: Usama Abdulwahab, Mohammed Wahab

Abstract:

This paper presents the application of uncapacitated facility location problems (UFLP) and 1-median problems to support decision making in blood supply chain networks. A plethora of factors make blood supply-chain networks a complex, yet vital problem for the regional blood bank. These factors are rapidly increasing demand; criticality of the product; strict storage and handling requirements; and the vastness of the theater of operations. As in the UFLP, facilities can be opened at any of $m$ predefined locations with given fixed costs. Clients have to be allocated to the open facilities. In classical location models, the allocation cost is the distance between a client and an open facility. In this model, the costs are the allocation cost, transportation costs, and inventory costs. In order to address this problem the median algorithm is used to analyze inventory, evaluate supply chain status, monitor performance metrics at different levels of granularity, and detect potential problems and opportunities for improvement. The Euclidean distance data for some Ontario cities (demand nodes) are used to test the developed algorithm. Sitation software, lagrangian relaxation algorithm, and branch and bound heuristics are used to solve this model. Computational experiments confirm the efficiency of the proposed approach. Compared to the existing modeling and solution methods, the median algorithm approach not only provides a more general modeling framework but also leads to efficient solution times in general.

Keywords: approximate dynamic programming, facility location, perishable product, inventory model, blood platelet, P-median problem

Procedia PDF Downloads 508
2133 Heterogeneous Reactions to Digital Opportunities: A Field Study

Authors: Bangaly Kaba

Abstract:

In the global information society, the importance of the Internet cannot be overemphasized. Africa needs access to the powerful information and communication tools of the Internet in order to obtain the resources and efficiency essential for sustainable development. Unfortunately, in 2013, the data from Internetworldstats showed only 15% of African populations have access to Internet. This relative low Internet penetration rate signals a problem that may threaten the economic development, governmental efficiency, and ultimately the global competitiveness of African countries. Many initiatives were undertaken to bring the benefits of the global information revolution to the people of Africa, through connection to the Internet and other Global Information Infrastructure technologies. The purpose is to understand differences between socio-economically advantaged and disadvantaged internet users. From that, we will determine what prevents disadvantaged groups from benefiting from Internet usage. Data were collected through a survey from Internet users in Ivory Coast. The results reveal that Personal network exposure, Self-efficacy and Availability are the key drivers of continued use intention for the socio-economically disadvantaged group. The theoretical and practical implications are also described.

Keywords: digital inequality, internet, integrative model, socio-economically advantaged and disadvantaged, use continuance, Africa

Procedia PDF Downloads 469
2132 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: knowledge management systems, ontologies, semantic web, open educational resources

Procedia PDF Downloads 500
2131 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 183
2130 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 476
2129 Advancements in Autonomous Drones for Enhanced Healthcare Logistics

Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.

Abstract:

Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.

Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics

Procedia PDF Downloads 16
2128 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 51