Search results for: graph signals
118 Auditory Perception of Frequency-Modulated Sweeps and Reading Difficulties in Chinese
Authors: Hsiao-Lan Wang, Chun-Han Chiang, I-Chen Chen
Abstract:
In Chinese Mandarin, lexical tones play an important role to provide contrasts in word meaning. They are pitch patterns and can be quantified as the fundamental frequency (F0), expressed in Hertz (Hz). In this study, we aim to investigate the influence of frequency discrimination on Chinese children’s performance of reading abilities. Fifty participants from 3rd to 4th grades, including 24 children with reading difficulties and 26 age-matched children, were examined. A serial of cognitive, language, reading and psychoacoustic tests were administrated. Magnetoencephalography (MEG) was also employed to study children’s auditory sensitivity. In the present study, auditory frequency was measured through slide-up pitch, slide-down pitch and frequency-modulated tone. The results showed that children with Chinese reading difficulties were significantly poor at phonological awareness and auditory discrimination for the identification of frequency-modulated tone. Chinese children’s character reading performance was significantly related to lexical tone awareness and auditory perception of frequency-modulated tone. In our MEG measure, we compared the mismatch negativity (MMNm), from 100 to 200 ms, in two groups. There were no significant differences between groups during the perceptual discrimination of standard sounds, fast-up and fast-down frequencies. However, the data revealed significant cluster differences between groups in the slow-up and slow-down frequencies discrimination. In the slow-up stimulus, the cluster demonstrated an upward field map at 106-151 ms (p < .001) with a strong peak time at 127ms. The source analyses of two dipole model and localization resolution model (CLARA) from 100 to 200 ms both indicated a strong source from the left temporal area with 45.845% residual variance. Similar results were found in the slow-down stimulus with a larger upward current at 110-142 ms (p < 0.05) and a peak time at 117 ms in the left temporal area (47.857% residual variance). In short, we found a significant group difference in the MMNm while children processed frequency-modulated tones with slow temporal changes. The findings may imply that perception of sound frequency signals with slower temporal modulations was related to reading and language development in Chinese. Our study may also support the recent hypothesis of underlying non-verbal auditory temporal deficits accounting for the difficulties in literacy development seen developmental dyslexia.Keywords: Chinese Mandarin, frequency modulation sweeps, magnetoencephalography, mismatch negativity, reading difficulties
Procedia PDF Downloads 576117 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 105116 A Brief Review on the Relationship between Pain and Sociology
Authors: Hanieh Sakha, Nader Nader, Haleh Farzin
Abstract:
Introduction: Throughout history, pain theories have been supposed by biomedicine, especially regarding its diagnosis and treatment aspects. Therefore, the feeling of pain is not only a personal experience and is affected by social background; therefore, it involves extensive systems of signals. The challenges in emotional and sentimental dimensions of pain originate from scientific medicine (i.e., the dominant theory is also referred to as the specificity theory); however, this theory has accepted some alterations by emerging physiology. Then, Von Frey suggested the theory of cutaneous senses (i.e., Muller’s concept: the common sensation of combined four major skin receptors leading to a proper sensation) 50 years after the specificity theory. The pain pathway was composed of spinothalamic tracts and thalamus with an inhibitory effect on the cortex. Pain is referred to as a series of unique experiences with various reasons and qualities. Despite the gate control theory, the biological aspect overcomes the social aspect. Vrancken provided a more extensive definition of pain and found five approaches: Somatico-technical, dualistic body-oriented, behaviorist, phenomenological, and consciousness approaches. The Western model combined physical, emotional, and existential aspects of the human body. On the other hand, Kotarba felt confused about the basic origins of chronic pain. Freund demonstrated and argued with Durkhemian about the sociological approach to emotions. Lynch provided a piece of evidence about the correlation between cardiovascular disease and emotionally life-threatening occurrences. Helman supposed a distinction between private and public pain. Conclusion: The consideration of the emotional aspect of pain could lead to effective, emotional, and social responses to pain. On the contrary, the theory of embodiment is based on the sociological view of health and illness. Social epidemiology shows an imbalanced distribution of health, illness, and disability among various social groups. The social support and socio-cultural level can result in several types of pain. It means the status of athletes might define their pain experiences. Gender is one of the important contributing factors affecting the type of pain (i.e., females are more likely to seek health services for pain relief.) Chronic non-cancer pain (CNCP) has become a serious public health issue affecting more than 70 million people globally. CNCP is a serious public health issue which is caused by the lack of awareness about chronic pain management among the general population.Keywords: pain, sociology, sociological, body
Procedia PDF Downloads 70115 Assessment of Potential Chemical Exposure to Betamethasone Valerate and Clobetasol Propionate in Pharmaceutical Manufacturing Laboratories
Authors: Nadeen Felemban, Hamsa Banjer, Rabaah Jaafari
Abstract:
One of the most common hazards in the pharmaceutical industry is the chemical hazard, which can cause harm or develop occupational health diseases/illnesses due to chronic exposures to hazardous substances. Therefore, a chemical agent management system is required, including hazard identification, risk assessment, controls for specific hazards and inspections, to keep your workplace healthy and safe. However, routine management monitoring is also required to verify the effectiveness of the control measures. Moreover, Betamethasone Valerate and Clobetasol Propionate are some of the APIs (Active Pharmaceutical Ingredients) with highly hazardous classification-Occupational Hazard Category (OHC 4), which requires a full containment (ECA-D) during handling to avoid chemical exposure. According to Safety Data Sheet, those chemicals are reproductive toxicants (reprotoxicant H360D), which may affect female workers’ health and cause fatal damage to an unborn child, or impair fertility. In this study, qualitative (chemical Risk assessment-qCRA) was conducted to assess the chemical exposure during handling of Betamethasone Valerate and Clobetasol Propionate in pharmaceutical laboratories. The outcomes of qCRA identified that there is a risk of potential chemical exposure (risk rating 8 Amber risk). Therefore, immediate actions were taken to ensure interim controls (according to the Hierarchy of controls) are in place and in use to minimize the risk of chemical exposure. No open handlings should be done out of the Steroid Glove Box Isolator (SGB) with the required Personal Protective Equipment (PPEs). The PPEs include coverall, nitrile hand gloves, safety shoes and powered air-purifying respirators (PAPR). Furthermore, a quantitative assessment (personal air sampling) was conducted to verify the effectiveness of the engineering controls (SGB Isolator) and to confirm if there is chemical exposure, as indicated earlier by qCRA. Three personal air samples were collected using an air sampling pump and filter (IOM2 filters, 25mm glass fiber media). The collected samples were analyzed by HPLC in the BV lab, and the measured concentrations were reported in (ug/m3) with reference to Occupation Exposure Limits, 8hr OELs (8hr TWA) for each analytic. The analytical results are needed in 8hr TWA (8hr Time-weighted Average) to be analyzed using Bayesian statistics (IHDataAnalyst). The results of the Bayesian Likelihood Graph indicate (category 0), which means Exposures are de "minimus," trivial, or non-existent Employees have little to no exposure. Also, these results indicate that the 3 samplings are representative samplings with very low variations (SD=0.0014). In conclusion, the engineering controls were effective in protecting the operators from such exposure. However, routine chemical monitoring is required every 3 years unless there is a change in the processor type of chemicals. Also, frequent management monitoring (daily, weekly, and monthly) is required to ensure the control measures are in place and in use. Furthermore, a Similar Exposure Group (SEG) was identified in this activity and included in the annual health surveillance for health monitoring.Keywords: occupational health and safety, risk assessment, chemical exposure, hierarchy of control, reproductive
Procedia PDF Downloads 173114 Theta-Phase Gamma-Amplitude Coupling as a Neurophysiological Marker in Neuroleptic-Naive Schizophrenia
Authors: Jun Won Kim
Abstract:
Objective: Theta-phase gamma-amplitude coupling (TGC) was used as a novel evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. However, to our best knowledge, no studies have reported the diagnostic utility of the TGC in the resting-state electroencephalographic (EEG) of neuroleptic-naive patients with schizophrenia compared to healthy controls. Thus, the purpose of this EEG study was to understand the underlying mechanisms in patients with schizophrenia by comparing the TGC at rest between two groups and to evaluate the diagnostic utility of TGC. Method: The subjects included 90 patients with schizophrenia and 90 healthy controls. All patients were diagnosed with schizophrenia according to the criteria of Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) by two independent psychiatrists using semi-structured clinical interviews. Because patients were either drug-naïve (first episode) or had not been taking psychoactive drugs for one month before the study, we could exclude the influence of medications. Five frequency bands were defined for spectral analyses: delta (1–4 Hz), theta (4–8 Hz), slow alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30-80 Hz). The spectral power of the EEG data was calculated with fast Fourier Transformation using the 'spectrogram.m' function of the signal processing toolbox in Matlab. An analysis of covariance (ANCOVA) was performed to compare the TGC results between the groups, which were adjusted using a Bonferroni correction (P < 0.05/19 = 0.0026). Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of the TGC data for schizophrenia diagnosis. Results: The patients with schizophrenia showed a significant increase in the resting-state TGC at all electrodes. The delta, theta, slow alpha, fast alpha, and beta powers showed low accuracies of 62.2%, 58.4%, 56.9%, 60.9%, and 59.0%, respectively, in discriminating the patients with schizophrenia from the healthy controls. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, displaying an overall classification accuracy of 92.5%. Conclusion: As TGC includes phase, which contains information about neuronal interactions from the EEG recording, TGC is expected to be useful for understanding the mechanisms the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The resting-state TGC value was increased in the patients with schizophrenia compared to that in the healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Further research exploring the association between TGC and medical or psychiatric conditions that may confound EEG signals will help clarify the potential utility of TGC.Keywords: quantitative electroencephalography (QEEG), theta-phase gamma-amplitude coupling (TGC), schizophrenia, diagnostic utility
Procedia PDF Downloads 143113 Dangerous Words: A Moral Economy of HIV/AIDS in Swaziland
Authors: Robin Root
Abstract:
A fundamental premise of medical anthropology is that clinical phenomena are simultaneously cultural, political, and economic: none more so than the linked acronyms HIV/AIDS. For the medical researcher, HIV/AIDS signals an epidemiological pandemic and a pathophysiology. For persons diagnosed with an HIV-related condition, the acronym often conjures dread, too often marking and marginalizing the afflicted irretrievably. Critical medical anthropology is uniquely equipped to theorize the linkages that bind individual and social wellbeing to global structural and culture-specific phenomena. This paper reports findings from an anthropological study of HIV/AIDS in Swaziland, site of the highest HIV prevalence in the world. The project, initiated in 2005, has documented experiences of HIV/AIDS, religiosity, and treatment and care as well as drought and famine. Drawing on interviews with Swazi religious and traditional leaders about their experiences of leadership amidst worsening economic conditions, environmental degradation, and an ongoing global health crisis, the paper provides uncommon insights for global health practitioners whose singular paradigm for designing and delivering interventions is biomedically-based. In contrast, this paper details the role of local leaders in mediating extreme social suffering and resilience in ways that medical science cannot model but which radically impact how sickness is experienced and health services are delivered and accessed. Two concepts help to organize the paper’s argument. First, a ‘moral economy of language’ is central to showing up the implicit ‘technologies of knowledge’ that inhere in scientific and religious discourses of HIV/AIDS; people draw upon these discourses strategically to navigate highly vulnerable conditions. Second, Paulo Freire’s ethnographic focus on a culture’s 'dangerous words' opens up for examination how ‘sex’ is dangerous for religion and ‘god’ is dangerous for science. The paper interrogates hegemonic and ‘lived’ discourses, both biomedical and religious, and contributes to an important literature on the moral economies of health, a framework of explication and, importantly, action appropriate to a wide-range of contemporary global health phenomena. The paper concludes by asserting that it is imperative that global health planners reflect upon and ‘check’ their hegemonic policy platforms by, one, collaborating with local authoritative agents of ‘what sickness means and how it is best treated,’ and, two, taking account of the structural barriers to achieving good health.Keywords: Africa, biomedicine, HIV/AIDS, qualitative research , religion
Procedia PDF Downloads 103112 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery
Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser
Abstract:
Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.Keywords: adverse events, global trigger tool, patient safety, record review
Procedia PDF Downloads 249111 Advancing Trustworthy Human-robot Collaboration: Challenges and Opportunities in Diverse European Industrial Settings
Authors: Margarida Porfírio Tomás, Paula Pereira, José Manuel Palma Oliveira
Abstract:
The decline in employment rates across sectors like industry and construction is exacerbated by an aging workforce. This has far-reaching implications for the economy, including skills gaps, labour shortages, productivity challenges due to physical limitations, and workplace safety concerns. To sustain the workforce and pension systems, technology plays a pivotal role. Robots provide valuable support to human workers, and effective human-robot interaction is essential. FORTIS, a Horizon project, aims to address these challenges by creating a comprehensive Human-Robot Interaction (HRI) solution. This solution focuses on multi-modal communication and multi-aspect interaction, with a primary goal of maintaining a human-centric approach. By meeting the needs of both human workers and robots, FORTIS aims to facilitate efficient and safe collaboration. The project encompasses three key activities: 1) A Human-Centric Approach involving data collection, annotation, understanding human behavioural cognition, and contextual human-robot information exchange. 2) A Robotic-Centric Focus addressing the unique requirements of robots during the perception and evaluation of human behaviour. 3) Ensuring Human-Robot Trustworthiness through measures such as human-robot digital twins, safety protocols, and resource allocation. Factor Social, a project partner, will analyse psycho-physiological signals that influence human factors, particularly in hazardous working conditions. The analysis will be conducted using a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. However, the adoption of novel technologies, particularly those involving human-robot interaction, often faces hurdles related to acceptance. To address this challenge, FORTIS will draw upon insights from Social Sciences and Humanities (SSH), including risk perception and technology acceptance models. Throughout its lifecycle, FORTIS will uphold a human-centric approach, leveraging SSH methodologies to inform the design and development of solutions. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No 101135707 (FORTIS).Keywords: skills gaps, productivity challenges, workplace safety, human-robot interaction, human-centric approach, social sciences and humanities, risk perception
Procedia PDF Downloads 52110 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 150109 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System
Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim
Abstract:
General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms
Procedia PDF Downloads 391108 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 97107 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico
Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón
Abstract:
The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.Keywords: interaction, political communication, social network analysis, Twitter
Procedia PDF Downloads 221106 Considering International/Local Peacebuilding Partnerships: The Stoplights Analysis System
Authors: Charles Davidson
Abstract:
This paper presents the Stoplight Analysis System of Partnering Organizations Readiness, offering a structured framework to evaluate conflict resolution collaboration feasibility, especially crucial in conflict areas, employing a colour-coded approach and specific assessment points, with implications for more informed decision-making and improved outcomes in peacebuilding initiatives. Derived from at total of 40 years of practical peacebuilding experience from the project’s two researchers as well as interviews of various other peacebuilding actors, this paper introduces the Stoplight Analysis System of Partnering Organizations Readiness, a comprehensive framework designed to facilitate effective collaboration in international/local peacebuilding partnerships by evaluating the readiness of both potential partner organisations and the location of the proposed project. ^The system employs a colour-coded approach, categorising potential partnerships into three distinct indicators: Red (no-go), Yellow (requires further research), and Green (promising, go ahead). Within each category, specific points are identified for assessment, guiding decision-makers in evaluating the feasibility and potential success of collaboration. The Red category signals significant barriers, prompting an immediate stoppage in the consideration of partnership. The Yellow category encourages deeper investigation to determine whether potential issues can be mitigated, while the Green category signifies organisations deemed ready for collaboration. This systematic and structured approach empowers decision-makers to make informed choices, enhancing the likelihood of successful and mutually beneficial partnerships. Methodologically, this paper utilised interviews from peacebuilders from around the globe, scholarly research of extant strategies, and a collaborative review of programming from the project’s two authors from their own time in the field. This method as a formalised model has been employed for the past two years across a litany of partnership considerations, and has been adjusted according to its field experimentation. This research holds significant importance in the field of conflict resolution as it provides a systematic and structured approach to peacebuilding partnership evaluation. In conflict-affected regions, where the dynamics are complex and challenging, the Stoplight Analysis System offers decision-makers a practical tool to assess the readiness of partnering organisations. This approach can enhance the efficiency of conflict resolution efforts by ensuring that resources are directed towards partnerships with a higher likelihood of success, ultimately contributing to more effective and sustainable peacebuilding outcomes.Keywords: collaboration, conflict resolution, partnerships, peacebuilding
Procedia PDF Downloads 64105 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 339104 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data
Authors: Martin Pellon Consunji
Abstract:
Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms
Procedia PDF Downloads 123103 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island
Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird
Procedia PDF Downloads 365102 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap
Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi
Abstract:
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound
Procedia PDF Downloads 78101 Kidnapping of Migrants by Drug Cartels in Mexico as a New Trend in Contemporary Slavery
Authors: Itze Coronel Salomon
Abstract:
The rise of organized crime and violence related to drug cartels in Mexico has created serious challenges for the authorities to provide security to those who live within its borders. However, to achieve a significant improvement in security is absolute respect for fundamental human rights by the authorities. Irregular migrants in Mexico are at serious risk of abuse. Research by Amnesty International as well as reports of the NHRC (National Human Rights) in Mexico, have indicated the major humanitarian crisis faced by thousands of migrants traveling in the shadows. However, the true extent of the problem remains invisible to the general population. The fact that federal and state governments leave no proper record of abuse and do not publish reliable data contributes to ignorance and misinformation, often spread by the media that portray migrants as the source of crime rather than their victims. Discrimination and intolerance against irregular migrants can generate greater hostility and exclusion. According to the modus operandi that has been recorded criminal organizations and criminal groups linked to drug trafficking structures deprive migrants of their liberty for forced labor and illegal activities related to drug trafficking, even some have been kidnapped for be trained as murderers . If the victim or their family cannot pay the ransom, the kidnapped person may suffer torture, mutilation and amputation of limbs or death. Migrant women are victims of sexual abuse during her abduction as well. In 2011, at least 177 bodies were identified in the largest mass grave found in Mexico, located in the town of San Fernando, in the border state of Tamaulipas, most of the victims were killed by blunt instruments, and most seemed to be immigrants and travelers passing through the country. With dozens of small graves discovered in northern Mexico, this may suggest a change in tactics between organized crime groups to the different means of obtaining revenue and reduce murder profile methods. Competition and conflict over territorial control drug trafficking can provide strong incentives for organized crime groups send signals of violence to the authorities and rival groups. However, as some Mexican organized crime groups are increasingly looking to take advantage of income and vulnerable groups, such as Central American migrants seem less interested in advertising his work to authorities and others, and more interested in evading detection and confrontation. This paper pretends to analyze the introduction of this new trend of kidnapping migrants for forced labors by drug cartels in Mexico into the forms of contemporary slavery and its implications.Keywords: international law, migration, transnational organized crime
Procedia PDF Downloads 416100 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR
Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman
Abstract:
Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography
Procedia PDF Downloads 49699 Signal Transduction in a Myenteric Ganglion
Authors: I. M. Salama, R. N. Miftahof
Abstract:
A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.Keywords: neuronal chain, signal transduction, plasticity, stability
Procedia PDF Downloads 39298 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent
Authors: John T. Leman, James Gibson, Peter J. Bonitatibus
Abstract:
There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization
Procedia PDF Downloads 3797 Recognition by the Voice and Speech Features of the Emotional State of Children by Adults and Automatically
Authors: Elena E. Lyakso, Olga V. Frolova, Yuri N. Matveev, Aleksey S. Grigorev, Alexander S. Nikolaev, Viktor A. Gorodnyi
Abstract:
The study of the children’s emotional sphere depending on age and psychoneurological state is of great importance for the design of educational programs for children and their social adaptation. Atypical development may be accompanied by violations or specificities of the emotional sphere. To study characteristics of the emotional state reflection in the voice and speech features of children, the perceptual study with the participation of adults and the automatic recognition of speech were conducted. Speech of children with typical development (TD), with Down syndrome (DS), and with autism spectrum disorders (ASD) aged 6-12 years was recorded. To obtain emotional speech in children, model situations were created, including a dialogue between the child and the experimenter containing questions that can cause various emotional states in the child and playing with a standard set of toys. The questions and toys were selected, taking into account the child’s age, developmental characteristics, and speech skills. For the perceptual experiment by adults, test sequences containing speech material of 30 children: TD, DS, and ASD were created. The listeners were 100 adults (age 19.3 ± 2.3 years). The listeners were tasked with determining the children’s emotional state as “comfort – neutral – discomfort” while listening to the test material. Spectrographic analysis of speech signals was conducted. For automatic recognition of the emotional state, 6594 speech files containing speech material of children were prepared. Automatic recognition of three states, “comfort – neutral – discomfort,” was performed using automatically extracted from the set of acoustic features - the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS). The results showed that the emotional state is worse determined by the speech of TD children (comfort – 58% of correct answers, discomfort – 56%). Listeners better recognized discomfort in children with ASD and DS (78% of answers) than comfort (70% and 67%, respectively, for children with DS and ASD). The neutral state is better recognized by the speech of children with ASD (67%) than by the speech of children with DS (52%) and TD children (54%). According to the automatic recognition data using the acoustic feature set GeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.687; children with DS – 0.725; TD children – 0.641. When using the acoustic feature set eGeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.671; children with DS – 0.717; TD children – 0.631. The use of different models showed similar results, with better recognition of emotional states by the speech of children with DS than by the speech of children with ASD. The state of comfort is automatically determined better by the speech of TD children (precision – 0.546) and children with ASD (0.523), discomfort – children with DS (0.504). The data on the specificities of recognition by adults of the children’s emotional state by their speech may be used in recruitment for working with children with atypical development. Automatic recognition data can be used to create alternative communication systems and automatic human-computer interfaces for social-emotional learning. Acknowledgment: This work was financially supported by the Russian Science Foundation (project 18-18-00063).Keywords: autism spectrum disorders, automatic recognition of speech, child’s emotional speech, Down syndrome, perceptual experiment
Procedia PDF Downloads 18996 Biocompatibility Tests for Chronic Application of Sieve-Type Neural Electrodes in Rats
Authors: Jeong-Hyun Hong, Wonsuk Choi, Hyungdal Park, Jinseok Kim, Junesun Kim
Abstract:
Identifying the chronic functions of an implanted neural electrode is an important factor in acquiring neural signals through the electrode or restoring the nerve functions after peripheral nerve injury. The purpose of this study was to investigate the biocompatibility of the chronic implanted neural electrode into the sciatic nerve. To do this, a sieve-type neural electrode was implanted at proximal and distal ends of a transected sciatic nerve as an experimental group (Sieve group, n=6), and the end-to-end epineural repair was operated with the cut sciatic nerve as a control group (reconstruction group, n=6). All surgeries were performed on the sciatic nerve of the right leg in Sprague Dawley rats. Behavioral tests were performed before and 1, 4, 7, 10, 14, and weekly days until 5 months following surgery. Changes in sensory function were assessed by measuring paw withdrawal responses to mechanical and cold stimuli. Motor function was assessed by motion analysis using a Qualisys program, which showed a range of motion (ROM) related to the joints. Neurofilament-heavy chain and fibronectin expression were detected 5 months after surgery. In both groups, the paw withdrawal response to mechanical stimuli was slightly decreased from 3 weeks after surgery and then significantly decreased at 6 weeks after surgery. The paw withdrawal response to cold stimuli was increased from 4 days following surgery in both groups and began to decrease from 6 weeks after surgery. The ROM of the ankle joint was showed a similar pattern in both groups. There was significantly increased from 1 day after surgery and then decreased from 4 days after surgery. Neurofilament-heavy chain expression was observed throughout the entire sciatic nerve tissues in both groups. Especially, the sieve group was showed several neurofilaments that passed through the channels of the sieve-type neural electrode. In the reconstruction group, however, a suture line was seen through neurofilament-heavy chain expression up to 5 months following surgery. In the reconstruction group, fibronectin was detected throughout the sciatic nerve. However, in the sieve group, the fibronectin was observed only in the surrounding nervous tissues of an implanted neural electrode. The present results demonstrated that the implanted sieve-type neural electrode induced a focal inflammatory response. However, the chronic implanted sieve-type neural electrodes did not cause any further inflammatory response following peripheral nerve injury, suggesting the possibility of the chronic application of the sieve-type neural electrodes. This work was supported by the Basic Science Research Program funded by the Ministry of Science (2016R1D1A1B03933986), and by the convergence technology development program for bionic arm (2017M3C1B2085303).Keywords: biocompatibility, motor functions, neural electrodes, peripheral nerve injury, sensory functions
Procedia PDF Downloads 15195 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 9094 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection
Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili
Abstract:
The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).Keywords: EM induction sensing, detector, plastic mines, remote sensing
Procedia PDF Downloads 14993 Correlation between Body Mass Dynamics and Weaning in Eurasian Lynx (Lynx lynx L, 1758)
Authors: A. S. Fetisova, M. N. Erofeeva, G. S. Alekseeva, K. A. Volobueva, M. D. Kim, S. V. Naidenko
Abstract:
Weaning is characterized by the transition from milk to solid food. In some species, such changes in diet are fast and gradual in others. The reasons for the weaning start are understandable. Changes in milk composition and decrease in maternity behavior push cubs to search for additional sources of nutrients. In nature, females have many opportunities to wean offspring in case of a lack of resources. In contrast, in controlled conditions the possibility of delayed weaning exists. The delay of weaning can lead to overspending of maternal resources. In addition, the main causes of weaning end are not so obvious. Near the weaning end behavior of offspring depends on many factors: intensity of maternal behavior, reduction of milk abundance, brood size, physiological status, and body mass. During the pre-weaning period dynamic of body mass is strongly connected with milk intake. Based on that fact could body mass be one of the signals for end of milk feeding? It is known that some animals usually wean their offspring when juveniles achieved body mass in some proportion to the adult weight. In turn, we put forward the hypothesis that decrease in growth rates causes the delay of weaning in Eurasian lynxes (Lynx lynx). To explore the hypothesis, we compared the dynamic of body mass with duration of milk suckling. Firstly, to get information about duration of suckling we visually observed 8 lynx broods from 30 to 120 days postpartum. During each 4-hour observation we registered the start and the end of suckling acts and then calculate the total duration of this behavior. To get the dynamic of body mass kittens were weighed once a week. Duration of suckling varied from 3076,19 ± 1408,60 to 422,54 ± 285,38 seconds when body mass gain changed from 247,35 ± 26,49 to 289,41 ± 122,35 grams. Results of Kendall Tau correlation test (N= 96; p< 0,05) showed a negative correlation (τ= -0,36) between duration of suckling and body mass of lynx kittens. In general duration of suckling increases in response to decrease in body mass gain with slight delay. In early weaning from 30 to 58 days duration of suckling decreases gradually as does the body mass gain. During the weaning period the negative correlation between suckling time and body mass becomes tighter. Although throughout the weaning consumption of solid food begins to prevail over the milk intake, the correlation persists until the end of weaning (90-105 days) and after it. In that way weaning in Eurasian lynxes is not a part of ontogenesis controlled only by maternal behavior. It seems to be a flexible process influenced by various factors including changes in growth rates. It is necessary to continue investigations to determine the critical value of body mass which marks the safe moment to stop milk feeding. Understanding such details of ontogenesis is very important to organize procedures aimed at the reproduction of mammals ex situ and the conservation of endangered species.Keywords: body mass, lynx, milk feeding, weaning
Procedia PDF Downloads 1892 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 27491 Biocultural Biographies and Molecular Memories: A Study of Neuroepigenetics and How Trauma Gets under the Skull
Authors: Elsher Lawson-Boyd
Abstract:
In the wake of the Human Genome Project, the life sciences have undergone some fascinating changes. In particular, conventional beliefs relating to gene expression are being challenged by advances in postgenomic sciences, especially by the field of epigenetics. Epigenetics is the modification of gene expression without changes in the DNA sequence. In other words, epigenetics dictates that gene expression, the process by which the instructions in DNA are converted into products like proteins, is not solely controlled by DNA itself. Unlike gene-centric theories of heredity that characterized much of the 20th Century (where the genes were considered as having almost god-like power to create life), gene expression in epigenetics insists on environmental ‘signals’ or ‘exposures’, a point that radically deviates from gene-centric thinking. Science and Technology Studies (STS) scholars have shown that epigenetic research is having vast implications for the ways in which chronic, non-communicable diseases are conceptualized, treated, and governed. However, to the author’s knowledge, there have not yet been any in-depth sociological engagements with neuroepigenetics that examine how the field is affecting mental health and trauma discourse. In this paper, the author discusses preliminary findings from a doctoral ethnographic study on neuroepigenetics, trauma, and embodiment. Specifically, this study investigates the kinds of causal relations neuroepigenetic researchers are making between experiences of trauma and the development of mental illnesses like complex post-traumatic stress disorder (PTSD), both throughout a human’s lifetime and across generations. Using qualitative interviews and nonparticipant observation, the author focuses on two public-facing research centers based in Melbourne: Florey Institute of Neuroscience and Mental Health (FNMH), and Murdoch Children’s Research Institute (MCRI). Preliminary findings indicate that a great deal of ambiguity characterizes this infant field, particularly when animal-model experiments are employed and the results are translated into human frameworks. Nevertheless, researchers at the FNMH and MCRI strongly suggest that adverse and traumatic life events have a significant effect on gene expression, especially when experienced during early development. Furthermore, they predict that neuroepigenetic research will have substantial implications for the ways in which mental illnesses like complex PTSD are diagnosed and treated. These preliminary findings shed light on why medical and health sociologists have good reason to be chiming in, engaging with and de-black-boxing ideations emerging from postgenomic sciences, as they may indeed have significant effects for vulnerable populations not only in Australia but other developing countries in the Global South.Keywords: genetics, mental illness, neuroepigenetics, trauma
Procedia PDF Downloads 12590 Improving Patient and Clinician Experience of Oral Surgery Telephone Clinics
Authors: Katie Dolaghan, Christina Tran, Kim Hamilton, Amanda Beresford, Vicky Adams, Jamie Toole, John Marley
Abstract:
During the Covid 19 pandemic routine outpatient appointments were not possible face to face. That resulted in many branches of healthcare starting virtual clinics. These clinics have continued following the return to face to face patient appointments. With these new types of clinic it is important to ensure that a high standard of patient care is maintained. In order to improve patient and clinician experience of the telephone clinics a quality improvement project was carried out to ensure the patient and clinician experience of these clinics was enhanced whilst remaining a safe, effective and an efficient use of resources. The project began by developing a process map for the consultation process and agreed on the design of a driver diagram and tests of change. In plan do study act (PDSA) cycle1 a single consultant completed an online survey after every patient encounter over a 5 week period. Baseline patient responses were collected using a follow-up telephone survey for each patient. Piloting led to several iterations of both survey designs. Salient results of PDSA1 included; patients not receiving appointment letters, patients feeling more anxious about a virtual appointment and many would prefer a face to face appointment. The initial clinician data showed a positive response with a provisional diagnosis being reached in 96.4% of encounters. PDSA cycle 2 included provision of a patient information sheet and information leaflets relevant to the patients’ conditions were developed and sent following new patient telephone clinics with follow-up survey analysis as before to monitor for signals of change. We also introduced the ability for patients to send an images of their lesion prior to the consultation. Following the changes implemented we noted an improvement in patient satisfaction and, in fact, many patients preferring virtual clinics as it lead to less disruption of their working lives. The extra reading material both before and after the appointments eased patients’ anxiety around virtual clinics and helped them to prepare for their appointment. Following the patient feedback virtual clinics are now used for review patients as well, with all four consultants within the department continuing to utilise virtual clinics. During this presentation the progression of these clinics and the reasons that these clinics are still operating following the return to face to face appointments will be explored. The lessons that have been gained using a QI approach have helped to deliver an optimal service that is valid and reliable as well as being safe, effective and efficient for the patient along with helping reduce the pressures from ever increasing waiting lists. In summary our work in improving the quality of virtual clinics has resulted in improved patient satisfaction along with reduced pressures on the facilities of the health trust.Keywords: clinic, satisfaction, telephone, virtual
Procedia PDF Downloads 5889 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials
Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova
Abstract:
Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system
Procedia PDF Downloads 406