Search results for: fuzzy multi-objective linear programming problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10463

Search results for: fuzzy multi-objective linear programming problems

9143 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 213
9142 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 116
9141 The Development of Leisure and Endowment Characteristic Villages in the Perspective of Balancing the Dwellers and Aged Visitors:A Case Study of Villages in Hangzhou Metropolitan Area

Authors: Zijiao Chai, Wangming Li

Abstract:

Under the background of increasing aging population, the situation of city endowment resources shortage gradually revealed. And many villages in the metropolitan area with the good natural ecological environment and leisure tourism base, have become one of the main destinations of urban old people for the off-site pension. This paper is based on a survey of more than ten villages which are characterized by leisure and endowment in Hangzhou metropolitan area, China. The satisfaction degree of the two main groups in the villages, dwellers, and aged visitors, is researched using the method of fuzzy comprehensive evaluation. The statistics are obtained from 535 questionnaires and qualitative interview. According to the satisfaction scores, it could be determined whether the dwellers and aged visitors have reached the equilibrium state. The equilibrium state is the development target of the villages, and it`s defined by environmentally friendly, proper for employment and pension, facilities sharing and harmonious life for each other. Furthermore, this paper comes up with some planning countermeasures in order to avoid "imbalance between dwellers and aged visitors" and obtain sustainable development while maintaining the economic benefit.

Keywords: aged visitors, balance between dwellers and aged visitors, dwellers, fuzzy comprehensive evaluation, Hangzhou metropolitan area, leisure and endowment characteristic villages

Procedia PDF Downloads 289
9140 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid

Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar

Abstract:

This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.

Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection

Procedia PDF Downloads 183
9139 Factors Motivating Experienced Secondary Teachers to Remain in the Teaching Profession

Authors: Joselito Castro Gutierrez, Herbert Orteza, Jervie Boligon, Kenneth Esteves, Edrick Kevin Ferrer, Mark Kevin Torres, Patrick Vergara

Abstract:

Teaching is a noble profession that involves an effective imparting of holistic learning. Consequently, it requires a driving force called motivation. This research aims to determine the motivating factors, problems encountered, solutions made by experienced secondary school teachers to remain in the teaching profession. A mixed unstructured/structured questionnaire was used for gathering data among public secondary school teachers. The researchers have arrived to a conclusion that the dominant motivating factors of teachers to stay in the profession are altruism, extrinsic factors, and self-efficacy. Meanwhile, the prevalent problems these experienced secondary teachers experienced are mutual dilemma, work overload, and personal issues. Teachers have varied methods on solving the problem which are: a) Direct Solution; b) Indirect Solution; and c) Pseudo-Solutions. Lastly, the factors, problems, and solutions, have influential effects on how long a teacher would sustain in teaching which would manifest as positive, negative and neutral effects.

Keywords: motivation, common problems of teachers, strategies in solving problems, teaching profession

Procedia PDF Downloads 445
9138 Analyzing Corporate Governance Disclosures in Type II Agency Problems in Indonesia

Authors: Martin S. Mulyadi

Abstract:

This research investigates the corporate governance disclosure behavior of Indonesian corporations with type II agency problems. The primary cause of the 1990s Asian financial crisis has been attributed to poor corporate governance practices in Indonesia. Most importantly, these poor practices were commonly found in family-owned and government-owned corporations. There are a lot of publicly listed family-owned and government-owned corporations in Indonesia. Agency theory refers to these corporations as corporations with type II agency problems. This research employs agency theory to analyzes corporate governance practice and disclosures in such settings and found that government-owned corporations perform better than family-owned corporations.

Keywords: corporate governance, corporate disclosures, agency theory, type II agency problems

Procedia PDF Downloads 141
9137 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 434
9136 Frequency Identification of Wiener-Hammerstein Systems

Authors: Brouri Adil, Giri Fouad

Abstract:

The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.

Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science

Procedia PDF Downloads 536
9135 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 260
9134 Selection of Variogram Model for Environmental Variables

Authors: Sheikh Samsuzzhan Alam

Abstract:

The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.

Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models

Procedia PDF Downloads 334
9133 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 469
9132 Intelligent Staff Scheduling: Optimizing the Solver with Tabu Search

Authors: Yu-Ping Chiu, Dung-Ying Lin

Abstract:

Traditional staff scheduling methods, relying on employee experience, often lead to inefficiencies and resource waste. The challenges of transferring scheduling expertise and adapting to changing labor regulations further complicate this process. Manual approaches become increasingly impractical as companies accumulate complex scheduling rules over time. This study proposes an algorithmic optimization approach to address these issues, aiming to expedite scheduling while ensuring strict compliance with labor regulations and company policies. The method focuses on generating optimal schedules that minimize weighted company objectives within a compressed timeframe. Recognizing the limitations of conventional commercial software in modeling and solving complex real-world scheduling problems efficiently, this research employs Tabu Search with both long-term and short-term memory structures. The study will present numerical results and managerial insights to demonstrate the effectiveness of this approach in achieving intelligent and efficient staff scheduling.

Keywords: intelligent memory structures, mixed integer programming, meta-heuristics, staff scheduling problem, tabu search

Procedia PDF Downloads 25
9131 A Proof for Goldbach's Conjecture

Authors: Hashem Sazegar

Abstract:

In 1937, Vinograd of Russian Mathematician proved that each odd large number can be shown by three primes. In 1973, Chen Jingrun proved that each odd number can be shown by one prime plus a number that has maximum two primes. In this article, we state one proof for Goldbach’conjecture. Introduction: Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was first proved by Chebyshev in 1850, which is why postulate is also called the Bertrand-Chebyshev theorem. Legendre’s conjecture states that there is a prime between n2 and (n+1)2 for every positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are; (i) Twin prime conjecture: There are infinitely many primes p such that p+2 is a prime. (ii) Goldbach’s conjecture: Every even integer n > 2 can be written asthe sum of two primes. (iii) Are there infinitely many primes p such that p−1 is a perfect square? Problems (i), (ii), and (iii) are open till date.

Keywords: Bertrand-Chebyshev theorem, Landau’s problems, twin prime, Legendre’s conjecture, Oppermann’s conjecture

Procedia PDF Downloads 402
9130 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
9129 An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs

Authors: Satya S. N. Narayana, P. Parthiban, T. Niranjan, N. Kannan

Abstract:

Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries.

Keywords: lean manufacturing, green manufacturing, MISM, FANP

Procedia PDF Downloads 543
9128 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 508
9127 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 99
9126 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models

Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif

Abstract:

This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.

Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function

Procedia PDF Downloads 395
9125 Iterative Linear Quadratic Regulator (iLQR) vs LQR Controllers for Quadrotor Path Tracking

Authors: Wesam Jasim, Dongbing Gu

Abstract:

This paper presents an iterative linear quadratic regulator optimal control technique to solve the problem of quadrotors path tracking. The dynamic motion equations are represented based on unit quaternion representation and include some modelled aerodynamical effects as a nonlinear part. Simulation results prove the ability and effectiveness of iLQR to stabilize the quadrotor and successfully track different paths. It also shows that iLQR controller outperforms LQR controller in terms of fast convergence and tracking errors.

Keywords: iLQR controller, optimal control, path tracking, quadrotor UAVs

Procedia PDF Downloads 447
9124 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 410
9123 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 432
9122 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 293
9121 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
9120 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 112
9119 Representation of the Solution of One Dynamical System on the Plane

Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox

Abstract:

This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.

Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system

Procedia PDF Downloads 193
9118 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 353
9117 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique

Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam

Abstract:

In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.

Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering

Procedia PDF Downloads 546
9116 Computational Fluid Dynamics-Coupled Optimisation Strategy for Aerodynamic Design

Authors: Anvar Atayev, Karl Steinborn, Aleksander Lovric, Saif Al-Ibadi, Jorg Fliege

Abstract:

In this paper, we present results obtained from optimising the aerodynamic performance of aerostructures in external ow. The optimisation method used was developed to efficiently handle multi-variable problems with numerous black-box objective functions and constraints. To demonstrate these capabilities, a series of CFD problems were considered; (1) a two-dimensional NACA aerofoil with three variables, (2) a two-dimensional morphing aerofoil with 17 variables, and (3) a three-dimensional morphing aeroplane tail with 33 variables. The objective functions considered were related to combinations of the mean aerodynamic coefficients, as well as their relative variations/oscillations. It was observed that for each CFD problem, an improved objective value was found. Notably, the scale-up in variables for the latter problems did not greatly hinder optimisation performance. This makes the method promising for scaled-up CFD problems, which require considerable computational resources.

Keywords: computational fluid dynamics, optimisation algorithms, aerodynamic design, engineering design

Procedia PDF Downloads 120
9115 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 353
9114 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 168