Search results for: experiential learning theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11359

Search results for: experiential learning theory

10039 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills

Procedia PDF Downloads 208
10038 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268
10037 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 94
10036 Effectiveness of Active Learning in Social Science Courses at Japanese Universities

Authors: Kumiko Inagaki

Abstract:

In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture.  The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.

Keywords: active learning, Japanese university, teaching method, university education

Procedia PDF Downloads 195
10035 Silencing the Protagonist: Gender and Rape Depiction in Pakistani Dramas

Authors: Saman R. Khan, Najma Sadiq

Abstract:

Silencing of opinions is an important aspect of Spiral of Silence theory however its applicability in rape-themed dramas requires investigation. This study focuses on the portrayal of female rape victim protagonists in Pakistani dramas and the factors influencing their behavior after rape. A quantitative content analysis was conducted on two prime-time dramas which directly dealt with female rape victims. Results indicate that the female protagonists who faced rape are shown as silent and submissive characters who are unable to communicate about their ordeal due to fear of social isolation. These findings lend support to the Spiral of Silence theory and indicate that the theory’s basic elements (inability to express opinions and fear of social isolation) exist in these TV dramas.

Keywords: gender stereotyping, rape victims, the spiral of silence, TV dramas

Procedia PDF Downloads 169
10034 Mentor and Mentee Based Learning

Authors: Erhan Eroğlu

Abstract:

This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.

Keywords: learning, mentor, mentee, training

Procedia PDF Downloads 228
10033 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory

Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov

Abstract:

The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.

Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field

Procedia PDF Downloads 500
10032 Improving the Quality of Transport Management Services with Fuzzy Signatures

Authors: Csaba I. Hencz, István Á. Harmati

Abstract:

Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.

Keywords: freight transport, decision support, information handling, fuzzy methods

Procedia PDF Downloads 259
10031 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 259
10030 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies

Procedia PDF Downloads 353
10029 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 92
10028 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 456
10027 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 125
10026 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning

Authors: Jaeseo Lim, Jooyong Park

Abstract:

Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.

Keywords: discussions, education, learning, lecture, test

Procedia PDF Downloads 176
10025 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
10024 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 198
10023 The Analysis of Application of Green Bonds in New Energy Vehicles in China: From Evolutionary Game Theory

Authors: Jing Zhang

Abstract:

Sustainable development in the new energy vehicles field is the requirement of the net zero aim. Green bonds are accepted as a practical financial tool to boost the transformation of relevant enterprises. The paper analyzes the interactions among governments, enterprises of new energy vehicles, and financial institutions by an evolutionary game theory model and offers advice to stakeholders in China. The decision-making subjects of green behavior are affected by experiences, interests, perception ability, and risk preference, so it is difficult for them to be completely rational. Based on the bounded rationality hypothesis, this paper applies prospect theory in the evolutionary game analysis framework and analyses the costs of government regulation of enterprises adopting green bonds. The influence of the perceived value of revenue prospect and the probability and risk transfer coefficient of the government's active regulation on the decision-making agent's strategy is verified by numerical simulation. Finally, according to the research conclusions, policy suggestions are given to promote green bonds.

Keywords: green bonds, new energy vehicles, sustainable development, evolutionary Game Theory model

Procedia PDF Downloads 86
10022 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: cell phone, digital micrographies, learning of sciences, teaching practices

Procedia PDF Downloads 596
10021 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment

Authors: Ramorola Mmankoko Ziphorah

Abstract:

Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.

Keywords: open distance learning, transactional distance, tutor, videoconference

Procedia PDF Downloads 128
10020 The Relationships between How and Why Students Learn and Academic Achievement

Authors: S. Chee Choy, Daljeet Singh Sedhu

Abstract:

This study examines the relationships between how and why students learned and academic achievement for 2646 university students from various faculties. The LALQ, a self-report measure of student approaches to learning was administered and academic achievement data were obtained from student CGPA. The results showed significant differences in the approach to learning of male and female students. How and why students learned can influence their achievement and efficacy as well. High and low achievers have different learning behaviours. High female achievers were more likely to learn for a better future and be persistent in it. Meanwhile high male achievers were more likely to seek approval from their peers and be more confident about graduating on time from their university. The implications of individual differences and limitations of the study are discussed.

Keywords: student learning, learner awareness, student achievement, LALQ

Procedia PDF Downloads 346
10019 Creation of an Integrated Development Environment to Assist and Optimize the Learning the Languages C and C++

Authors: Francimar Alves, Marcos Castro, Marllus Lustosa

Abstract:

In the context of the teaching of computer programming, the choice of tool to use is very important in the initiation and continuity of learning a programming language. The literature tools do not always provide usability and pedagogical dynamism clearly and accurately for effective learning. This hypothesis implies fall in productivity and difficulty of learning a particular programming language by students. The integrated development environments (IDEs) Dev-C ++ and Code :: Blocks are widely used in introductory courses for undergraduate courses in Computer Science for learning C and C ++ languages. However, after several years of discontinuity maintaining the source code of Dev-C ++ tool, the continued use of the same in the teaching and learning process of the students of these institutions has led to difficulties, mainly due to the lack of update by the official developers, which resulted in a sequence of problems in using it on educational settings. Much of the users, dissatisfied with the IDE Dev-C ++, migrated to Code :: Blocks platform targeting the more dynamic range in the learning process of the C and C ++ languages. Nevertheless, there is still the need to create a tool that can provide the resources of most IDE's software development literature, however, more interactive, simple, accurate and efficient. This motivation led to the creation of Falcon C ++ tool, IDE that brings with features that turn it into an educational platform, which focuses primarily on increasing student learning index in the early disciplines of programming and algorithms that use the languages ​​C and C ++ . As a working methodology, a field research to prove the truth of the proposed tool was used. The test results and interviews with entry-level students and intermediate in a postsecondary institution gave basis for the composition of this work, demonstrating a positive impact on the use of the tool in teaching programming, showing that the use of Falcon C ++ software is beneficial in the teaching process of the C and C ++ programming languages.

Keywords: ide, education, learning, development, language

Procedia PDF Downloads 443
10018 Developing Abbreviated Courses

Authors: Lynette Nickleberry Stewart

Abstract:

The present presentation seeks to explore distinction across disciplines in the appropriateness of accelerated courses and suggestions for implementing accelerated courses in various disciplines. Grounded in a review of research on accelerated learning (AL), this presentation will discuss the intradisciplinary appropriateness of accelerated courses for various topics and student types, and make suggestions for implementing augmented courses. Meant to inform an emerging ‘handbook’ of accelerated course development, facilitators will lead participants in a discussion of personal challenges and triumphs in their attempts at accelerated course design.

Keywords: adult learning, abbreviated courses, accelerated learning, course design

Procedia PDF Downloads 120
10017 Effects of Closed-Caption Programs on EFL Learners' Listening Comprehension and Vocabulary Learning

Authors: Bahman Gorjian

Abstract:

This study investigated the effects of closed-captioning on vocabulary learning and listening comprehension of English-language movies. Captioning is thus an effective language-learning tool for persons learning English as a second language. Because students may learn a foreign language "passively," utilizing subtitles on television could make learning English enjoyable for them. Closed captioning is an electrical technique that converts spoken words from a television program's audio into written text that mimics subtitles in another language. The findings of this study showed the importance of using closed-captioning software when learning a foreign language. As a result, these must be considered when teaching EFL/ESL. The influence of watching movies with closed captions on vocabulary and hearing is compared in this study. This goal can be reached by employing a closed-captioned movie as a teaching tool in the classroom. This research was critical because it demonstrates the advantages of closed-captioning programs in EFL classrooms for both teachers and students. The study's findings assisted teachers in better understanding how to employ closed captioning as a teaching tool in the classroom. The effects will be seen as even more significant for language learners who use the method.

Keywords: closed-captions, listening, comprehension, vcabulary

Procedia PDF Downloads 89
10016 Developing a Theory for Study of Transformation of Historic Cities

Authors: Sana Ahrar

Abstract:

Cities are undergoing rapid transformation with the change in lifestyle and technological advancements. These transformations may be experienced or physically visible in the built form. This paper focuses on the relationship between the social, physical environment, change in lifestyle and the interrelated factors influencing the transformation of any historic city. Shahjahanabad as a city has undergone transformation under the various political powers as well as the various policy implementations after independence. These visible traces of transformation diffused throughout the city may be due to socio-economic, historic, political factors and due to the globalization process. This study shall enable evolving a theory for the study of transformation of Historic cities such as Shahjahanabad: which has been plundered, rebuilt, and which still thrives as a ‘living heritage city’. The theory developed will be the process of studying the transformation and can be used by planners, policy makers and researchers in different urban contexts.

Keywords: heritage, historic cities, Shahjahanabad, transformation

Procedia PDF Downloads 395
10015 An Interview and PhotoVoice Exploration of Sexual Education Provision to Women with Physical Disability and Potential Experiences of Violence

Authors: D. Beckwith

Abstract:

This research explored sexual identity for women with physical disability, both congenital and acquired. It also explored whether exposure to violence or negative risk-taking had played a role in their intimate relationships. This phenomenological research used semi-structured interviews and photo elicitation with the researcher’s insider knowledge adding experiential substance and understanding to the discussion. Findings confirm sexuality for women with physical disability is marginalised and de-gendered making it less of a priority for professionals and policy makers and emphasising the need to more effectively support women with disability in relation to their sexuality, sexual expression and violence.

Keywords: lived-experience, identity, PhotoVoice, sexuality, violence, women with physical disability

Procedia PDF Downloads 134
10014 Exploring the Compatibility of The Rhizome and Complex Adaptive System (CAS) Theory as a Hybrid Urban Strategy Via Aggregation, Nonlinearity, and Flow

Authors: Sudaff Mohammed, Wahda Shuker Al-Hinkawi, Nada Abdulmueen Hasan

Abstract:

The compatibility of the Rhizome and Complex Adaptive system theory as a strategy within the urban context is the essential interest of this paper since there are only a few attempts to establish a hybrid, multi-scalar, and developable strategy based on the concept of the Rhizome and the CAS theory. This paper aims to establish a Rhizomic CAS strategy for different urban contexts by investigating the principles, characteristics, properties, and mechanisms of Rhizome and Complex Adaptive Systems. The research focused mainly on analyzing three properties: aggregation, non-linearity, and flow through the lens of Rhizome, Rhizomatization of CAS properties. The most intriguing result is that the principal and well-investigated characteristics of Complex Adaptive systems can be ‘Rhizomatized’ in two ways; highlighting commonalities between Rhizome and Complex Adaptive systems in addition to using Rhizome-related concepts. This paper attempts to emphasize the potency of the Rhizome as an apparently stochastic and barely anticipatable structure that can be developed to analyze cities of distinctive contexts for formulating better customized urban strategies.

Keywords: rhizome, complex adaptive system (CAS), system Theory, urban system, rhizomatic CAS, assemblage, human occupation impulses (HOI)

Procedia PDF Downloads 42
10013 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
10012 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics

Procedia PDF Downloads 176
10011 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 111
10010 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method

Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli

Abstract:

Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.

Keywords: children with disability, learning abilities, inclusion, neuromotor development

Procedia PDF Downloads 155