Search results for: electrical power system security
23170 The Effect of Maritime Security on National Development in Nigeria
Authors: Adegboyega Adedolapo Ola
Abstract:
Globally, a country’s maritime security has a significant impact on its national development because it serves as a major source of a commercial contact and food supply. However, the country has been faced with a number of problems, such as piracy, kidnapping, illegal bunkering and oil theft. As such, the study examined the contribution and the relationship between maritime security and Nigeria’s development, as well as the prospects and challenges of maritime security in Nigeria. The study utilized a questionnaire and focused group discussion/interview as instruments for data collection. The method of analysis employed in the study is descriptive. A total of Three Hundred and Ninety (390) respondents were randomly selected. The result of the study showed that maritime security contributes to national development in Nigeria by guaranteeing food security in Nigeria, creating employment opportunities as well as increasing the Gross Domestic Product (GDP) of the economy. It was also found that maritime security is yet to provide sufficient support for national development in Nigeria. It is further established that it has prospects for development through the creation of employment opportunities, increase in foreign earnings, and fostering improved living standards for citizens. The study concluded that the high level of corruption, piracy and kidnapping, lack of political will by the government and the porosity of the Nigerian borders are serious obstacles, among others. In attempting to solve the problem of piracy and kidnapping in Nigerian maritime, to contribute to National development, it is primordial to address the cancer of corruption, poverty, and youth unemployment. In view of this, the study recommends: among other things, that the maritime industry should be well secured by removing its constraints/bottlenecks so as to enhance its contributions to national development.Keywords: maritime security, national development, terrorism, piracy
Procedia PDF Downloads 8123169 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator
Procedia PDF Downloads 24523168 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift
Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro
Abstract:
In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential
Procedia PDF Downloads 7923167 Evidence-Based Policy Making to Improve Human Security in Pakistan
Authors: Ayesha Akbar
Abstract:
Pakistan is moving from a security state to a welfare state despite several security challenges both internal and external. Human security signifies a varied approach in different regions depending upon the leadership and policy priorities. The link between human development and economic growth is not automatic. It has to be created consciously by forward-looking policies and strategies by national governments. There are seven components or categories of human security these include: Economic Security, Personal Security, Health Security, Environmental Security, Food Security, Community Security and Political Security. The increasing interest of the international community to clearly understand the dimensions of human security provided the grounds to Pakistani scholars as well to ponder on the issue and delineate lines of human security. A great deal of work has been either done or in process to evaluate human security indicators in Pakistan. Notwithstanding, after having been done a great deal of work the human security in Pakistan is not satisfactory. A range of deteriorating indicators of human development that lies under the domain of human security leaves certain inquiries to be answered. What are the dimensions of human security in Pakistan? And how are they being dealt from the perspective of policy and institution in terms of its operationalization in Pakistan? Is the human security discourse reflects evidence-based policy changes. The methodology is broadly based on qualitative methods that include interviews, content analysis of policy documents. Pakistan is among the most populous countries in the world and faces high vulnerability to climate change. Literacy rate has gone down with the surge of youth bulge to accommodate in the job market. Increasing population is creating food problems as the resources have not been able to compete with the raising demands of food and other social amenities of life. Majority of the people are facing acute poverty. Health outcomes are also not satisfactory with the high infant and maternal mortality rate. Pakistan is on the verge of facing water crisis as the water resources are depleting so fast with the high demand in agriculture and energy sector. Pakistan is striving hard to deal with the declining state of human security but the dilemma is lack of resources that hinders in meeting up with the emerging demands. The government requires to bring about more change with scaling-up economic growth avenues with enhancing the capacity of human resources. A modern performance drive culture with the integration of technology is required to deliver efficient and effective service delivery. On an already fast track process of reforms; e-governance and evidence based policy mechanism is being instilled in the government process for better governance and evidence based decisions.Keywords: governance, human development index, human security, Pakistan, policy
Procedia PDF Downloads 25323166 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems
Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos
Abstract:
Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system
Procedia PDF Downloads 18323165 A Review on Factors Influencing Implementation of Secure Software Development Practices
Authors: Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin
Abstract:
More and more businesses and services are depending on software to run their daily operations and business services. At the same time, cyber-attacks are becoming more covert and sophisticated, posing threats to software. Vulnerabilities exist in the software due to the lack of security practices during the phases of software development. Implementation of secure software development practices can improve the resistance to attacks. Many methods, models and standards for secure software development have been developed. However, despite the efforts, they still come up against difficulties in their deployment and the processes are not institutionalized. There is a set of factors that influence the successful deployment of secure software development processes. In this study, the methodology and results from a systematic literature review of factors influencing the implementation of secure software development practices is described. A total of 44 primary studies were analysed as a result of the systematic review. As a result of the study, a list of twenty factors has been identified. Some of factors that affect implementation of secure software development practices are: Involvement of the security expert, integration between security and development team, developer’s skill and expertise, development time and communication between stakeholders. The factors were further classified into four categories which are institutional context, people and action, project content and system development process. The results obtained show that it is important to take into account organizational, technical and people issues in order to implement secure software development initiatives.Keywords: secure software development, software development, software security, systematic literature review
Procedia PDF Downloads 37823164 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 52523163 Performance Comparison of Microcontroller-Based Optimum Controller for Fruit Drying System
Authors: Umar Salisu
Abstract:
This research presents the development of a hot air tomatoes drying system. To provide a more efficient and continuous temperature control, microcontroller-based optimal controller was developed. The system is based on a power control principle to achieve smooth power variations depending on a feedback temperature signal of the process. An LM35 temperature sensor and LM399 differential comparator were used to measure the temperature. The mathematical model of the system was developed and the optimal controller was designed and simulated and compared with the PID controller transient response. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. First, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Second, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Third, the microcontroller disconnects the power to the chamber after the moisture content of the fruits is removed to minimal. Experiments were conducted with 1kg of fresh tomatoes at three different temperatures (40, 50 and 60 °C) at constant relative humidity of 30%RH. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits. In the context of temperature control, the results obtained showed that the response of the optimal controller has zero overshoot whereas the PID controller response overshoots to about 30% of the set-point. Another performance metric used is the rising time; the optimal controller rose without any delay while the PID controller delayed for more than 50s. It can be argued that the optimal controller performance is preferable than that of the PID controller since it does not overshoot and it starts in good time.Keywords: drying, microcontroller, optimum controller, PID controller
Procedia PDF Downloads 30123162 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis
Procedia PDF Downloads 9823161 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 39723160 A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors
Authors: Gábor Kovács
Abstract:
Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.Keywords: induction motor, pole changing 3Y/3Y, pole phase modulation, pole changing 1:3, 1:6
Procedia PDF Downloads 16823159 Can Career Advancement and Job Security Act as Collaterals for Commitment? Evidence from the Hotel Industry of Malaysia
Authors: Aizzat Md. Nasurdin, Noor Hazlina Ahmad, Cheng Ling Tan
Abstract:
This study aims to examine the role of career advancement and job security as predictors of employee commitment to their organization. Data was collected from 580 frontline employees attached to two departments of 29 luxury hotels in Peninsular Malaysia. Statistical results using Partial Least Squares technique provided support for the proposed hypotheses. In view of the findings, theoretical and practical implications are discussed.Keywords: organizational commitment, career advancement, job security, frontline employees, luxury hotels, Malaysia
Procedia PDF Downloads 39123158 A Novel Idea to Benefit of the Load Side’s Harmonics
Authors: Hussein Al-bayaty
Abstract:
This paper presents a novel idea to show the ability to benefit of the harmonic currents which are produced on the load side of the power grid. The proposed circuit contributes in reduction of the total harmonic distortion (THD) percentage through adding a high pass filter to draw harmonic currents with 150 Hz and multiple frequencies a and convert them to DC current and then reconvert it to AC current with 50 Hz frequency in order to feed different loads. The circuit has been designed, investigated and simulated in the MATLAB, Simulink program; the results will be assessed and compared the two cases: firstly, the system without adding the new circuit. Secondly, with adding the high pas filter circuit to the power system.Keywords: harmonics elimination, passive filters, Total Harmonic Distortion (THD), filter circuit
Procedia PDF Downloads 41323157 The Impact of Water Reservoirs on Biodiversity and Food Security and the Creation of Adaptation Mechanisms
Authors: Inom S. Normatov, Abulqosim Muminov, Parviz I. Normatov
Abstract:
Problems of food security and the preservation of reserved zones in the region of Central Asia under the conditions of the climate change induced by the placement and construction of large reservoirs are considered. The criteria for the optimum placement and construction of reservoirs that entail the minimum impact on the environment are established. The need for the accounting of climatic parameters is shown by the calculation of the water quantity required for the irrigation of agricultural lands.Keywords: adaptation, biodiversity, food security, water reservoir, risk
Procedia PDF Downloads 25623156 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine
Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park
Abstract:
Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography
Procedia PDF Downloads 35223155 Detentions in Kashmir: A Review of Impact of J&K PSA, 1978
Authors: Naseer Ahmad Bhat
Abstract:
Jammu and Kashmir Public Safety Act, 1978 provides for administrative detention in Jammu and Kashmir, a disputed region between India & Pakistan, since 1947. This paper shall critically analyse the working of PSA (Public Safety Act) in this J&K since 1978, since its inception. Detentions under this Act traverse between the security of the State and Liberty of citizens but over decades, has this Act served its purpose in Kashmir or not shall be analysed in this paper. J&K PSA is used to detain political workers, Over-Ground Workers and Stone Pelters who pose a direct threat to the ‘security of the State.’ Detentions under J&K PSA are a good measure in the hands of Security agencies to bring calm during periods of turmoil, but it has socio-economic consequences for detainees as well as families. This paper shall highlight the Socio-Economic impact of detentions under J&K PSA on individuals and families.Keywords: detentions, Kashmir, public safety act, liberty, security
Procedia PDF Downloads 22823154 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle
Procedia PDF Downloads 26023153 Microbial Fuel Cells: Performance and Applications
Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled
Abstract:
This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network
Procedia PDF Downloads 20723152 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 10323151 A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation
Authors: Yinjun Tu, Qiang Fang, Glenn I. Matthews, Shuenn-Yuh Lee
Abstract:
This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal.Keywords: EMG, FES, stimulus artefacts, self-adaptive
Procedia PDF Downloads 39923150 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 5623149 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike
Authors: Hong Yu, Dirk Heider, Suresh Advani
Abstract:
Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.Keywords: carbon composite, joule heating, lightning strike, resistor network
Procedia PDF Downloads 22823148 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC
Procedia PDF Downloads 24123147 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure
Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek
Abstract:
The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/ business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply-customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.Keywords: added value, DYVELOP, controlling, environments, process approach
Procedia PDF Downloads 41223146 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems
Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour
Abstract:
The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output
Procedia PDF Downloads 32223145 Migration, Food Security, Rapid Urbanization and Population Rise in Nigeria: A Wake-Up Call to Policy-Makers
Authors: A. E. Obayelu, S. O. Olubiyo
Abstract:
Food is different from other commodities because everybody needs food for survival. This has led to a shift in focus to food security in the global policy arena. However, there is paucity of studies on the interactions between food security, migration, urbanization and population rise. This paper therefore look at the linkages between migration and food security in the context of rapid urbanization and population rise of Nigeria. The study obtained data and information from both secondary sources and primary method through the voice of some selected Nigerians through telephone interview. The findings revealed that, the primary factor for the rapid urbanization in Nigeria is migration; most foods are still produced by peasant farmers who are scattered all over the rural areas and not multinational companies who produce on large scale. The country is still characterized with inadequate infrastructural facilities and services to cater for growing population. There are no protective policies enforced by the Nigeria government. In most cases, the migrants are left entirely on mercy of what they can find to due for survival. The most common coping mechanisms by migrants from rural to urban areas are changing food intake in terms of quantity, quality, diversity and frequency and prioritizing children. Policies that address urban food security need to consider the complex relationship between rapid population rise and migration and appropriate transformations that will be able to manage urbanization. With increasing rate of urbanization, the focus of food security should no longer be that of rural onlyKeywords: agricultural commercialization, agricultural transformation, food security, urban, urbanization
Procedia PDF Downloads 42923144 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate
Procedia PDF Downloads 33323143 Optimum Design of Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq, Rachid El Bachtiri
Abstract:
The solar power source for pumping water is one of the most promising areas in photovoltaic applications. The implementation of these systems allows to protect the environment and reduce the CO2 gas emission compared to systems trained by diesel generators. This paper presents a comparative study between the photovoltaic pumping system driven by DC motor, and AC motor to define the optimum design of this application. The studied system consists of PV array, DC-DC Boost Converter, inverter, motor-pump set and storage tank. The comparison was carried out to define the characteristics and the performance of each system. Each subsystem is modeled in order to simulate the whole system in MATLAB/ Simulink. The results show the efficiency of the proposed technique.Keywords: photovoltaic water pumping system, DC motor-pump, AC motor-pump, DC-DC boost converter
Procedia PDF Downloads 32723142 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use
Authors: Mayank Mundhra, Chester Rebeiro
Abstract:
Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.Keywords: Ripple, Kelips, unique node list, consensus, information propagation
Procedia PDF Downloads 14523141 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array
Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah
Abstract:
High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging
Procedia PDF Downloads 195