Search results for: behavior against washing machine parameters
15442 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 5315441 Exploring Gen Z Consumers’ Behavior Towards Sustainable Fashion
Authors: Lilia Righi
Abstract:
Recently, the fashion industry has demonstrated a keen interest in sustainability and the environment. Sustainable fashion has huge potential and appeals to environmentally conscious Generation Z shoppers. Meanwhile, Generation Z customers have attracted researchers' interest due to their overconsumption of clothing. However, most studies in this area focus on designing or producing sustainable clothing, with little exploration of consumers. To fill this gap, the present study aims to determine the important factors influencing Generation Z consumers' decisions to purchase sustainable fashion by mobilizing the theory of planned behavior (TPB). It uses deductive qualitative research based on 18 semi-structured interviews with Generation Z consumers in France. Qualitative data will be analyzed using reflective thematic analysis. On a theoretical level, this research contributes to enriching the literature by mobilizing, for the first time, the theory of planned behavior in the context of sustainable fashion. On a practical level, the results can help practitioners determine effective marketing strategies to persuade Generation Z to consume sustainable clothing.Keywords: generation Z, qualitative methodology, sustainable fashion, theory of planned behavior (TPB).
Procedia PDF Downloads 3815440 Old Swimmers Tire Quickly: The Effect of Time on Quality of Thawed versus Washed Sperm
Authors: Emily Hamilton, Adiel Kahana, Ron Hauser, Shimi Barda
Abstract:
BACKGROUND: In the male fertility and sperm bank unit of Tel Aviv Sourasky medical center, women are treated with intrauterine insemination (IUI) using washed sperm from their partner or thawed sperm from a selected donor. In most cases, the women perform the IUI treatment in Sourasky, but sometimes they ask to undergo the insemination procedure in another clinic with their own fertility doctor. In these cases, the sperm sample is prepared at the Sourasky lab and the patient is inseminated after arriving to her doctor. Our laboratory has previously found that time negatively affects several parameters of thawed sperm, and we estimate that it has more severe and significant effect than on washed sperm. AIM: To examine the effect of time on the quality of washed sperm versus thawed sperm. METHODS: Sperm samples were collected from men referred for semen analysis. Each ejaculate was allowed to liquefy for at least 20 min at 37°C and analyzed for sperm motility and vitality percentage and DNA fragmentation index (Time 0). Subsequently, 1ml of the sample was divided into two parts, 1st part was washed only and the 2nd part was washed, frozen and thawed. Time 1 analysis occurred immediately after sperm washing or thawing. Time 2 analysis occurred 75 minutes after time 1. Statistical analysis was performed using Student t-test. P values<0.05 were considered significant. RESULTS: Preliminary data showed that time had a greater impact on the average percentages of sperm motility and vitality in thawed compared to washed sperm samples (26%±10% vs. 21%±10% and 21%±9% vs. 9%±10%, respectively). An additional trend towards increased average DNA fragmentation percentage in thawed samples compared to washed samples was observed (46%±18% vs. 25%±24%). CONCLUSION: Time negatively effects sperm quality. The effect is greater in thawed samples compared to fresh samples.Keywords: ART, male fertility, sperm cryopreservation, sperm quality
Procedia PDF Downloads 19415439 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine
Authors: Chen Wang, Chun Liang
Abstract:
Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine
Procedia PDF Downloads 17315438 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung
Authors: Yu-Chen Hsu, Kuang C. Lin
Abstract:
The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows
Procedia PDF Downloads 31115437 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38615436 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling
Authors: Hadi Chahal, Irini Djeran-Maigre
Abstract:
This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials
Procedia PDF Downloads 12315435 The Effect on Rolling Mill of Waviness in Hot Rolled Steel
Authors: Sunthorn Sittisakuljaroen
Abstract:
The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends.Keywords: edge waviness, hot rolling steel, metal sheet defect, SS 400, roll leveller
Procedia PDF Downloads 42015434 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 5515433 Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell
Authors: Mohammad Syahirin Aisha, Khairul Imran Sainan
Abstract:
The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air.Keywords: air-breathing PEM fuel cell, cathode side, performance, variation in air condition
Procedia PDF Downloads 46115432 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay
Authors: Zahra Okba, Hassan El Ouizgani
Abstract:
Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model
Procedia PDF Downloads 11415431 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow
Authors: Shivani Saini
Abstract:
The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.Keywords: Darcy model, nanofluid, porous layer, throughflow
Procedia PDF Downloads 13715430 Elasto-Plastic Behavior of Rock during Temperature Drop
Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma
Abstract:
A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.Keywords: bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior
Procedia PDF Downloads 12715429 Exploration of Abuse of Position for Sexual Gain by UK Police
Authors: Terri Cole, Fay Sweeting
Abstract:
Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.Keywords: abuse of position, forensic psychology, misconduct, sexual abuse
Procedia PDF Downloads 19415428 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis
Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes
Abstract:
An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.Keywords: climate change, cluster analysis, gamma distribution, rainfall
Procedia PDF Downloads 31915427 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions
Authors: Jose Ruiz, Jose Velasquez, Holger Lovon
Abstract:
Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube
Procedia PDF Downloads 14415426 Influence of Solenoid Configuration on Electromagnetic Acceleration of Plunger
Authors: Shreyansh Bharadwaj, Raghavendra Kollipara, Sijoy C. D., R. K. Mittal
Abstract:
Utilizing the Lorentz force to propel an electrically conductive plunger through a solenoid represents a fundamental application in electromagnetism. The parameters of the solenoid significantly influence the force exerted on the plunger, impacting its response. A parametric study has been done to understand the effect of these parameters on the force acting on the plunger. This study is done to determine the most optimal combination of parameters to obtain the fast response. Analysis has been carried out using an algorithm capable of simulating the scenario of a plunger undergoing acceleration within a solenoid. Authors have conducted an analysis focusing on several key configuration parameters of the solenoid. These parameters include the inter-layer gap (in the case of a multi-turn solenoid), different conductor diameters, varying numbers of turns, and diverse numbers of layers. Primary objective of this paper is to discern how alterations in these parameters affect the force applied to the plunger. Through extensive numerical simulations, a dataset has been generated and utilized to construct informative plots. These plots provide visual representations of the relationships between the solenoid configuration parameters and the resulting force exerted on the plunger, which can further be used to deduce scaling laws. This research endeavors to offer valuable insights into optimizing solenoid configurations for enhanced electromagnetic acceleration, thereby contributing to advancements in electromagnetic propulsion technology.Keywords: Lorentz force, solenoid configuration, electromagnetic acceleration, parametric analysis, simulation
Procedia PDF Downloads 4715425 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards
Authors: Parisi L., Hamili D., Azlan N.
Abstract:
The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics
Procedia PDF Downloads 42915424 Investigating the Relationship of Age, Annual Income, and Education on Women's Investment Behavior in the Arab Region
Authors: Razan Salem
Abstract:
This study aims to investigate the investment behavior of Arab women (in regards to their herding behavior, risk tolerance, confidence and investment literacy levels). This study aims to investigate the relationship between three demographic factors (age, income, education) and the investment behavior of Arab women. On average, women in the Arab region face several obstacles that limit them from fully participating in stocks investments. In the context, this study focuses on extending the existing literature to include Arab women individuals and their investment behaviors. To achieve the study’s objective, the researcher distributed 600 close-ended online questionnaires to a sample of Arab male and female individual investors in both Saudi Arabia and Jordan. The researcher used quantitative statistical methods (frequency distribution along with the Kruskal-Wallis H Test and the Mann-Whitney U Test) to analyze the 550 questionnaire respondents. The findings indicated that only age, educational level, and annual income level are associated with the investment behavior of Arab women, where age is only negatively associated with their financial risk tolerance levels. Additionally, income level is positively associated with Arab women‘s confidence and investment literacy levels, while educational level is only associated positively with their investment confidence levels. According to annual income, Arab women with lower incomes have lower confidence and investment literacy levels. The limited income level might prevent the sample Arab women from investing in the financial information and advisors that may help in improving their investment literacy levels. Furthermore, Arab women with lower educational levels have lower investment literacy levels and thus, this may limit their stock investments. Overall, the study contributes to the existing literature by focusing directly on examining the investment behavior of Arab women and its association with age, annual income, and education. Generally, there are scarce existing studies that investigate the association of demographic factors with the investment behavior of women only in regards to their herding behavior, risk tolerance, investment confidence, and investment literacy levels (combined), especially Arab women investors.Keywords: Arab region, demographic factors, investment behavior, women investors
Procedia PDF Downloads 18915423 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites
Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias
Abstract:
Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance
Procedia PDF Downloads 25415422 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 25515421 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 30315420 Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters
Authors: Robert G. Nini
Abstract:
Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide.Keywords: atterberg limits, clay, compression and swelling indexes, settlement, soil consolidation
Procedia PDF Downloads 13715419 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations
Authors: M. Mazraehli, F. Mehrabani, S. Zare
Abstract:
In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations
Procedia PDF Downloads 16615418 Knowledge and Eating Behavior of Teenage Pregnancy
Authors: Udomporn Yingpaisuk, Premwadee Karuhadej
Abstract:
The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine
Procedia PDF Downloads 35815417 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition
Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri
Abstract:
This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words
Procedia PDF Downloads 56015416 The Effect of Taxpayer Political Beliefs on Tax Evasion Behavior: An Empirical Study Applied to Tunisian Case
Authors: Nadia Elouaer
Abstract:
Tax revenue is the main state resource and one of the important variables in tax policy. Nevertheless, this resource is continually decreasing, so it is important to focus on the reasons for this decline. Several studies show that the taxpayer is reluctant to pay taxes, especially in countries at risk or in countries in transition, including Tunisia. This study focuses on the tax evasion behavior of a Tunisian taxpayer under the influence of his political beliefs, as well as the influence of different tax compliance variables. Using a questionnaire, a sample of 500 Tunisian taxpayers is used to examine the relationship between political beliefs and taxpayer affiliations and tax compliance variables, as well as the study of the causal link between political beliefs and fraudulent behavior. The data were examined using correlation, factor, and regression analysis and found a positive and statistically significant relationship between the different tax compliance variables and the tax evasion behavior. There is also a positive and statistically significant relationship between tax evasion and political beliefs and affiliations. The study of the relationship between political beliefs and compliance variables shows that they are closely related. The conclusion is to admit that tax evasion and political beliefs are closely linked, and the government should update its tax policy and modernize its administration in order to strengthen the credibility and disclosure of information in order to restore a relationship of trust between public authorities and the taxpayer.Keywords: fiscal policy, political beliefs, tax evasion, taxpayer behavior
Procedia PDF Downloads 14715415 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia
Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim
Abstract:
The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer
Procedia PDF Downloads 33315414 Application of Machine Learning Models to Predict Couchsurfers on Free Homestay Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
Couchsurfing is a free homestay and social networking service accessible via the website and mobile app. Couchsurfers can directly request free accommodations from others and receive offers from each other. However, it is typically difficult for people to make a decision that accepts or declines a request when they receive it from Couchsurfers because they do not know each other at all. People are expected to meet up with some Couchsurfers who are kind, generous, and interesting while it is unavoidable to meet up with someone unfriendly. This paper utilized classification algorithms of Machine Learning to help people to find out the Good Couchsurfers and Not Good Couchsurfers on the Couchsurfing website. By knowing the prior experience, like Couchsurfer’s profiles, the latest references, and other factors, it became possible to recognize what kind of the Couchsurfers, and furthermore, it helps people to make a decision that whether to host the Couchsurfers or not. The value of this research lies in a case study in Kyoto, Japan in where the author has hosted 54 Couchsurfers, and the author collected relevant data from the 54 Couchsurfers, finally build a model based on classification algorithms for people to predict Couchsurfers. Lastly, the author offered some feasible suggestions for future research.Keywords: Couchsurfing, Couchsurfers prediction, classification algorithm, hospitality tourism platform, hospitality sciences, machine learning
Procedia PDF Downloads 13115413 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 89