Search results for: Tifinagh character recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2407

Search results for: Tifinagh character recognition

1087 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 118
1086 Psychological Nano-Therapy: A New Method in Family Therapy

Authors: Siamak Samani, Nadereh Sohrabi

Abstract:

Psychological nano-therapy is a new method based on systems theory. According to the theory, systems with severe dysfunctions are resistant to changes. Psychological nano-therapy helps the therapists to break this ice. Two key concepts in psychological nano-therapy are nano-functions and nano-behaviors. The most important step in psychological nano-therapy in family therapy is selecting the most effective nano-function and nano-behavior. The aim of this study was to check the effectiveness of psychological nano-therapy for family therapy. One group pre-test-post-test design (quasi-experimental Design) was applied for research. The sample consisted of ten families with severe marital conflict. The important character of these families was resistance for participating in family therapy. In this study, sending respectful (nano-function) text massages (nano-behavior) with cell phone were applied as a treatment. Cohesion/respect sub scale from self-report family processes scale and family readiness for therapy scale were used to assess all family members in pre-test and post-test. In this study, one of family members was asked to send a respectful text massage to other family members every day for a week. The content of the text massages were selected and checked by therapist. To compare the scores of families in pre-test and post-test paired sample t-test was used. The results of the test showed significant differences in both cohesion/respect score and family readiness for therapy between per-test and post-test. The results revealed that these families have found a better atmosphere for participation in a complete family therapy program. Indeed, this study showed that psychological nano-therapy is an effective method to make family readiness for therapy.

Keywords: family therapy, family conflicts, nano-therapy, family readiness

Procedia PDF Downloads 659
1085 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation

Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir

Abstract:

It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.

Keywords: concrete formulation, fractal character, granular packing, method of formulation

Procedia PDF Downloads 259
1084 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 221
1083 “Lightyear” – The Battle for LGBTQIA+ Representation Behind Disney/Pixar’s Failed Blockbuster

Authors: Ema Vitória Fonseca Lavrador

Abstract:

In this work, we intend to explore the impact that the film "Lightyear" (2022) had on the social context of its production, distribution, and reception. This film, produced by Walt Disney Animation Studios and Pixar Animation Studios, depicts the story of Buzz Lightyear, a Space Ranger from which the character of the same name in the "Toy Story" film franchise is based. This prequel was predicted to be the blockbuster of the year, but it was a financial fiasco and the subject of numerous controversies, which also caused it to be drowned out by the film "Minions: The Rise of Gru" (2022). The reason for its failure is not based on the film's narrative or quality but on its controversial context for being a commitment to LGBTQIA+ representation in an unexpected way, by featuring a same-sex couple and showing a kiss shared by them. This representation cost Disney distribution in countries against LGBTQIA+ representation in media and involved Disney in major disagreements with fans and politicians, especially for being a direct opposition to the Florida House Bill 1557, also called the “Don't Say Gay” bill. Many major companies have taken a stand against this law because it jeopardizes the safety of the LGBTQIA+ community, and, although Disney initially cut the kiss off the film, pressure from the staff and audience resulted in unprecedented progress. For featuring a brief homosexual kiss, its exhibition was banned in several countries and discouraged by the same public that was previously the focus of Disney's attention, as this is a conservative “family-friendly” branded company. We believe it is relevant to study the case of "Lightyear" because it is a work that raises awareness and promotes representation of communities affected during the dark times while less legislation is being approved to protect the rights and safety of queer people.

Keywords: Don’t Say Gay” bill, gender stereotypes, LGBTQIA+ representation, lightyear, Disney/Pixar

Procedia PDF Downloads 81
1082 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 148
1081 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran

Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani

Abstract:

Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.

Keywords: hemodialysis patients, duration of hemodialysis, memory types, Zahedan

Procedia PDF Downloads 178
1080 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 481
1079 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
1078 Assessment of Body Mass Index among Children of Primary School in Behbahan City

Authors: Hosseini Siahi Zohreh, Sana Mohammad Jafar

Abstract:

With increase in fat and over weight in children and its undesirable effects on different organisms of the body and since many of the sicknesses are due to over weight and with losing weight these sicknesses disappear, and on the other hand with mal nutrition and under weight in children other kind of sicknesses such as derogation of body's security system, frequent infection, insufficient growth, shortness, and delay in maturity etc. are some of the signs of being under weight. Therefore recognition of signs of over weight and under weight and their prevalence in children are important. To determine this difficulty we have used the body mass index as screening tool since it is very prevalent and a good and important guide and has very good relation with body fat in children. In this study 2321 students from primary schools in Behbahan have been chosen randomly and evaluated by height and weight and their body mass index have been calculated and then recorded on the BMI percentile diagram which is for age and gender. The following results obtained: The amount of total fat, over weight and slimness are 9.3, 12.1 and 12.32 percent respectively. Therefore 21.4% of the children were over weighted. It did not show any meaningful statistical relation in fat conditions among boys and girls, but there has been a meaningful statistical relation in slimness among boys and girls.

Keywords: assessment, students, Behbahan, Body Mass Index

Procedia PDF Downloads 519
1077 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction

Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung

Abstract:

In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.

Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality

Procedia PDF Downloads 474
1076 Expounding the Evolution of the Proto-Femme Fatale and Its Correlation with the New Woman: A Close Study of David Mamet's Oleanna

Authors: Silvia Elias

Abstract:

The 'Femme Fatale' figure has become synonymous with a mysterious and seductive woman whose charms captivate her lovers into bonds of irresistible desire, often leading them to compromise or downfall. Originally, a Femme Fatale typically uses her beauty to lead men to their destruction but in modern literature, she represents a direct attack on traditional womanhood and the nuclear family as she refuses to abide by the pillars of mainstream society creating an image of a strong independent woman who defies the control of men and rejects the institution of the family. This research aims at discussing the differences and similarities between the femme fatale and the New Woman and how they are perceived by the audience. There is often confusion between the characteristics that define a New Woman and a Femme Fatale since both women desire independence, challenge typical gender role casting, push against the limits of the patriarchal society and take control of their sexuality. The study of the femme fatale remains appealing in modern times because the fear of gender equality gives life to modern femme fatale versions and post-modern literary works introduce their readers to new versions of the deadly seductress. One that does not fully depend on her looks to destroy men. The idea behind writing this paper was born from reading David Mamet's two-character play Oleanna (1992) and tracing the main female protagonist/antagonist's transformation from a helpless inarticulate girl into a powerful controlling negotiator who knows how to lead a bargain and maintain the upper hand.

Keywords: Circe, David, Eve, evolution, feminist, femme fatale, gender, Mamet, new, Odysseus, Oleanna, power, Salome, schema, seduction, temptress, woman

Procedia PDF Downloads 455
1075 Portuguese City Reconstructed from Public Space: The Example of the Requalification of Cacém Central Area

Authors: Rodrigo Coelho

Abstract:

As several authors have pointed out (such as Jordi Borja, or Oriol Bohigas), the necessity to “make center” presents itself not only as a imperative response to deal with the processes of dissolution of peripheral urbanization, as it should be assumed, from the point of view its symbolic and functional meaning, as a key concept to think and act on the enlarged city. The notion of re-centralization (successfully applied in urban periphery recompositions, such as in Barcelona or Lyon), understood from the redefinition of mobility, the strengthening of core functions, and from the creation or consolidation of urban fabrics (always articulated with policies of creation and redevelopment of public spaces), seems to become one of the key strategies over the challenge of making the city on the “city periphery”. The question we want to address in this paper concerns, essentially, the importance of public space in the (re) construction of the contemporary "shapeless city” sectors (which, in general, we associate to urban peripheries). We will seek demonstrate, from the analysis of a Portuguese case study–The Cacém Central Area requalification, integrated in Polis Program (National Program for Urban Rehabilitation and Environmental Improvement of Cities, released in 1999 by the Portuguese government), the conditions under which the public space project can act, subsequently, in the urban areas of recent formation, where, in many situations, the public space did not have a structuring role in its urbanization, seeing its presence reduced to a residual character. More specifically, we intend to demonstrate with this example the methodological and urban design aspects that led to the regeneration of a disqualified and degraded urban area, by intervening consistently and profoundly in public space (with well defined objectives and criteria, and framed in a more comprehensive strategy, attentive to the various scales of urban design).

Keywords: public space, urban design, urban regeneration, urban and regional studies

Procedia PDF Downloads 578
1074 ESRA: An End-to-End System for Re-identification and Anonymization of Swiss Court Decisions

Authors: Joel Niklaus, Matthias Sturmer

Abstract:

The publication of judicial proceedings is a cornerstone of many democracies. It enables the court system to be made accountable by ensuring that justice is made in accordance with the laws. Equally important is privacy, as a fundamental human right (Article 12 in the Declaration of Human Rights). Therefore, it is important that the parties (especially minors, victims, or witnesses) involved in these court decisions be anonymized securely. Today, the anonymization of court decisions in Switzerland is performed either manually or semi-automatically using primitive software. While much research has been conducted on anonymization for tabular data, the literature on anonymization for unstructured text documents is thin and virtually non-existent for court decisions. In 2019, it has been shown that manual anonymization is not secure enough. In 21 of 25 attempted Swiss federal court decisions related to pharmaceutical companies, pharmaceuticals, and legal parties involved could be manually re-identified. This was achieved by linking the decisions with external databases using regular expressions. An automated re-identification system serves as an automated test for the safety of existing anonymizations and thus promotes the right to privacy. Manual anonymization is very expensive (recurring annual costs of over CHF 20M in Switzerland alone, according to an estimation). Consequently, many Swiss courts only publish a fraction of their decisions. An automated anonymization system reduces these costs substantially, further leading to more capacity for publishing court decisions much more comprehensively. For the re-identification system, topic modeling with latent dirichlet allocation is used to cluster an amount of over 500K Swiss court decisions into meaningful related categories. A comprehensive knowledge base with publicly available data (such as social media, newspapers, government documents, geographical information systems, business registers, online address books, obituary portal, web archive, etc.) is constructed to serve as an information hub for re-identifications. For the actual re-identification, a general-purpose language model is fine-tuned on the respective part of the knowledge base for each category of court decisions separately. The input to the model is the court decision to be re-identified, and the output is a probability distribution over named entities constituting possible re-identifications. For the anonymization system, named entity recognition (NER) is used to recognize the tokens that need to be anonymized. Since the focus lies on Swiss court decisions in German, a corpus for Swiss legal texts will be built for training the NER model. The recognized named entities are replaced by the category determined by the NER model and an identifier to preserve context. This work is part of an ongoing research project conducted by an interdisciplinary research consortium. Both a legal analysis and the implementation of the proposed system design ESRA will be performed within the next three years. This study introduces the system design of ESRA, an end-to-end system for re-identification and anonymization of Swiss court decisions. Firstly, the re-identification system tests the safety of existing anonymizations and thus promotes privacy. Secondly, the anonymization system substantially reduces the costs of manual anonymization of court decisions and thus introduces a more comprehensive publication practice.

Keywords: artificial intelligence, courts, legal tech, named entity recognition, natural language processing, ·privacy, topic modeling

Procedia PDF Downloads 148
1073 The Priming Effect of Morphology, Phonology, Semantics, and Orthography in Mandarin Chinese: A Prime Paradigm Study

Authors: Bingqing Xu, Wenxing Shuai

Abstract:

This study investigates the priming effects of different Chinese compound words by native Mandarin speakers. There are lots of homonym, polysemy, and synonym in Chinese. However, it is unclear which kind of words have the biggest priming effect. Native Mandarin speakers were tested in a visual-word lexical decision experiment. The stimuli, which are all two-character compound words, consisted of two parts: primes and targets. Five types of relationships were used in all stimuli: morphologically related condition, in which the prime and the target contain the same morpheme; orthographically related condition, in which the target and the prime contain the different morpheme with the same form; phonologically related condition, in which the target and the prime contain the different morpheme with the same phonology; semantically related condition, in which the target and the prime contain the different morpheme with similar meanings; totally unrelated condition. The time since participants saw the target to respond was recorded. Analyses on reaction time showed that the average reaction time of morphologically related targets was much shorter than others, suggesting the morphological priming effect is the biggest. However, the reaction time of the phonologically related conditions was the longest, even longer than unrelated conditions. According to scatter plots analyses, 86.7% of participants had priming effects in morphologically related conditions, only 20% of participants had priming effects in phonologically related conditions. These results suggested that morphologically related conditions had the biggest priming effect. The orthographically and semantically related conditions also had priming effects, whereas the phonologically related conditions had few priming effects.

Keywords: priming effect, morphology, phonology, semantics, orthography

Procedia PDF Downloads 146
1072 Undergraduate Students’ Learning Experience and Practices in Multilingual Higher Education Institutions: The Case of the University of Luxembourg

Authors: Argyro Maria Skourmalla

Abstract:

The present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, has adopted a new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. With around 7.000 students, more than half of which are international students, the University is a meeting point for languages and cultures. This paper includes data from an online survey that with undergraduate students from different disciplines at the University of Luxembourg. Students shared their personal experience and opinions regarding language use in this higher education context, as well as practices they use in learning in this multilingual context. Findings show the role of technology in assisting students in different aspects of learning this multilingual context. At the same time, more needs to be done to avoid an exclusively monolingual paradigm in higher education. Findings also show that some languages remain ‘unseen’ in this context. Overall, even though linguistic diversity in this University is seen as an asset, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.

Keywords: higher education, learning, linguistic diversity, multilingual practices

Procedia PDF Downloads 65
1071 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
1070 EduEasy: Smart Learning Assistant System

Authors: A. Karunasena, P. Bandara, J. A. T. P. Jayasuriya, P. D. Gallage, J. M. S. D. Jayasundara, L. A. P. Y. P. Nuwanjaya

Abstract:

Usage of smart learning concepts has increased rapidly all over the world recently as better teaching and learning methods. Most educational institutes such as universities are experimenting those concepts with their students. Smart learning concepts are especially useful for students to learn better in large classes. In large classes, the lecture method is the most popular method of teaching. In the lecture method, the lecturer presents the content mostly using lecture slides, and the students make their own notes based on the content presented. However, some students may find difficulties with the above method due to various issues such as speed in delivery. The purpose of this research is to assist students in large classes in the following content. The research proposes a solution with four components, namely note-taker, slide matcher, reference finder, and question presenter, which are helpful for the students to obtain a summarized version of the lecture note, easily navigate to the content and find resources, and revise content using questions.

Keywords: automatic summarization, extractive text summarization, speech recognition library, sentence extraction, automatic web search, automatic question generator, sentence scoring, the term weight

Procedia PDF Downloads 148
1069 Technical Parameters Evaluation for Caps to Apucarana/Parana - Brazil APL

Authors: Cruz, G. P., Nagamatsu, R. N., Scacchetti, F. A. P., Merlin, F. K.

Abstract:

This study aims to assess a set of technical parameters that provide quality products to the companies that produce caps, APL Apucarana / PR, the city that produces most Brazilian caps, in order to verify the potential of Brazilian caps to compete with international brands, recognized by the standard of excellence when it comes to quality of its products. The determination of the technical parameters was arbitrated from textile ABNT, a total of six technical parameters, providing eight tests for cotton caps. For the evaluation, we used as reference a leading brand recognized worldwide (based on their sales volume in $) for comparison with 3 companies of the APL Apucarana. The results showed that, of the 8 tests, of 8 tests, the companies Apucarana did not obtain better performance than the competitor. They obtained the same results in three tests and lower performance in 5. Given these values, it is concluded that local caps are not far from reaching the quality of leading brand. It is recommended that the APL companies use the parameters to evaluate their products, using this information to support decision-making that seek to improve both the product design and its production process, enabling the feasibility for faster international recognition . Thus, they may have an edge over its main competitor.

Keywords: technical parameters, making caps, quality, evaluation

Procedia PDF Downloads 345
1068 Anatomical and Histological Characters of Cymbopogon nardus Roots and Its Mutagenic Properties

Authors: Pravaree Phuneerub, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Cymbopogon nardus Rendel (Family Gramineae) is commonly known as citronella grass. The dried root of C. nardus is used for antipyretic, anti-inflammation, anti-analgesic and anticancer in traditional Thai medicine. Transverse sectional and pulverized C. nardus root were illustrated. The volatile oil was extracted from oil gland by hydrodistillation and analysed by GC/MS. Cymbopogon nardus root was exhaustively extracted by continuously maceration in ethanol and water respectively. The mutagenic and antimutagenic properties of the ethanol extract and fractionated water extract of C. nardus root were evaluated by Ames assay using the S. typhimurium strains TA98 and TA100 as the models. The result indicated that the anatomical character of root transverse section displayed epidermis, parenchyma, oil gland, phloem, xylem vessel, endodermis and pith. Histological characters of root powder showed parenchyma containing oleoresin, parenchyma in longitudinal view, reticulate vessel, annular vessel, starch granules and fragment of fiber. The root volatile oil was rich in sesquiterpenes dominated by elemol (22.87%) and alpha-eudesmol (16.09%). For mutagenic activity, the both extracts of C. nardus were no mutagenic toward S. typhimurium strains TA98 and TA100. Furthermore, the ethanol extract and fractionated water extract of C. nardus root demonstrated strong antimutagenic effect against of nitrite treated 1-aminopyrene to S. typhimurium strains TA98 and TA100. This present investigation suggested that the dried root extract of C. nardus can be further developed as promising antimutagenic agent.

Keywords: Cymbopogon nardus, volatile oil analysis, mutagenic, antimutagenic effect, Ames Salmonella assay

Procedia PDF Downloads 347
1067 Draw Me Close: Queering Virtual Reality through (Re)Performances of Memory

Authors: Camille Intson

Abstract:

This paper endeavors to explore the opportunities, challenges, and ethics of reconstructing and re-enacting archives of memory through virtual reality (VR) performance, using Jordan Tannahill’s Draw Me Close as an exemplary case study. Draw Me Close is a 1:1 virtual reality (VR) performance in which the artist’s childhood memories, experiences, and interactions with his mother are reconstructed in the wake of her passing. Solo audience members are positioned as Jordan (the subject and character) and taken through a series of narratives, (virtual) spaces, and interactions with his “mother,” played by a live actor. Piece by piece, audiences are brought into the world of the “shifting” archive, inhabiting Jordan’s reconstructed virtual world from his early explorations of queer sexuality through to his mother’s cancer diagnosis and passing. This paper will explore how the world of Draw Me Close represents a “touching” and/or “queering” of time within its archive, blurring and transgressing the boundaries between the animate and the inanimate, life and death. On a philosophical level, considering foundational queer performance scholarship and archival theory, it will also examine how performance’s ephemerality rewards its artists with the dual advantages of visibility and protection, allowing for an ethical exploration of traumatic memory and loss within a disappearing medium. Finally, this provocation will use Draw Me Close as a point of departure from which to outline future possibilities for performance and emerging technologies’ engagements with archival theory and practice. By positioning virtual reality (VR) as an archive-constructing medium, it aims to move beyond the question of how we can take performances seriously as archives towards how personal archive construction is itself a performative act.

Keywords: intermedial theatre, new media arts, queer performance, virtual reality

Procedia PDF Downloads 88
1066 Porphyry Cu-Mo-(Au) Mineralization at Paraga Area, Nakhchivan District, Azerbaijan: Evidence from Mineral Paragenesis, Hyrothermal Alteration and Geochemical Studies

Authors: M. Kumral, A. Abdelnasser, M. Budakoglu, M. Karaman, D. K. Yildirim, Z. Doner, A. Bostanci

Abstract:

The Paraga area is located at the extreme eastern part of Nakhchivan district at the boundary with Armenia. The field study is situated at Ordubad region placed in 9 km from Paraga village and stays at 2300-2800 m height over sea level. It lies within a region of low-grade metamorphic porphyritic volcanic and plutonic rocks. The detailed field studies revealed that this area composed mainly of metagabbro-diorite intrusive rocks with porphyritic character emplaced into meta-andesitic rocks. This complex is later intruded by unmapped olivine gabbroic rocks. The Cu-Mo-(Au) mineralization at Paraga deposit is vein-type mineralization that is essentially related to quartz veins stockwork which cut the dioritic rocks and concentrated at the eastern and northeastern parts of the area with different directions N80W, N25W, N70E and N45E. Also, this mineralization is associated with two shearing zones directed N75W and N15E. The host porphyritic rocks were affected by intense sulfidation, carbonatization, sericitization and silicification with pervasive hematitic alterations accompanied with mineralized quartz veins and quartz-carbonate veins. Sulfide minerals which are chalcopyrite, pyrite, arsenopyrite and sphalerite occurred in two cases either inside these mineralized quartz veins or disseminated in the highly altered rocks as well as molybdenite and also at the peripheries between the altered host rock and veins. Gold found as inclusion disseminated in arsenopyrite and pyrite as well as in their cracks.

Keywords: porphyry Cu-Mo-(Au), Paraga area, Nakhchivan, Azerbaijan, paragenesis, hyrothermal alteration

Procedia PDF Downloads 408
1065 Architectural Experience of the Everyday in Phuket Old Town

Authors: Thirayu Jumsai na Ayudhya

Abstract:

Initial attempts to understand about what architecture means to people as they go about their everyday life through my previous research revealed that knowledge such as environmental psychology, environmental perception, environmental aesthetics, did not adequately address a perceived need for the contextualized and holistic theoretical framework. In my previous research, it is found that people’s making senses of their everyday architecture can be described in terms of four super‐ordinate themes; (1) building in urban (text), (2) building in (text), (3) building in human (text), (4) and building in time (text). For more comprehensively understanding of how people make sense of their everyday architectural experience, in this ongoing research Phuket Old town was selected as the focal urban context where the distinguish character of Chino-Portuguese is remarkable. It is expected that in a unique urban context like Phuket old town unprecedented super-ordinate themes will be unveiled through the reflection of people’s everyday experiences. The ongoing research of people’s architectural experience conducted in Phuket Island, Thailand, will be presented succinctly. The research will address the question of how do people make sense of their everyday architecture/buildings especially in a unique urban context, Phuket Old town, and identify ways in which people make sense of their everyday architecture. Participant-Produced-Photograph (PPP) and Interpretative Phenomenological Analysis (IPA) are adopted as main methodologies. PPP allows people to express experiences of their everyday urban context freely without any interference or forced-data generating by researchers. With IPA methodology a small pool of participants is considered desirable given the detailed level of analysis required and its potential to produce a meaningful outcome.

Keywords: architectural experience, the everyday architecture, Phuket, Thailand

Procedia PDF Downloads 298
1064 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 309
1063 Reservoir Potential, Net Pay Zone and 3D Modeling of Cretaceous Clastic Reservoir in Eastern Sulieman Belt Pakistan

Authors: Hadayat Ullah, Pervez Khalid, Saad Ahmed Mashwani, Zaheer Abbasi, Mubashir Mehmood, Muhammad Jahangir, Ehsan ul Haq

Abstract:

The aim of the study is to explore subsurface structures through data that is acquired from the seismic survey to delineate the characteristics of the reservoir through petrophysical analysis. Ghazij Shale of Eocene age is regional seal rock in this field. In this research work, 3D property models of subsurface were prepared by applying Petrel software to identify various lithologies and reservoir fluids distribution throughout the field. The 3D static modeling shows a better distribution of the discrete and continuous properties in the field. This model helped to understand the reservoir properties and enhance production by selecting the best location for future drilling. A complete workflow is proposed for formation evaluation, electrofacies modeling, and structural interpretation of the subsurface geology. Based on the wireline logs, it is interpreted that the thickness of the Pab Sandstone varies from 250 m to 350 m in the entire study area. The sandstone is massive with high porosity and intercalated layers of shales. Faulted anticlinal structures are present in the study area, which are favorable for the accumulation of hydrocarbon. 3D structural models and various seismic attribute models were prepared to analyze the reservoir character of this clastic reservoir. Based on wireline logs and seismic data, clean sand, shaly sand, and shale are marked as dominant facies in the study area. However, clean sand facies are more favorable to act as a potential net pay zone.

Keywords: cretaceous, pab sandstone, petrophysics, electrofacies, hydrocarbon

Procedia PDF Downloads 143
1062 A Comparative Analysis of Green Buildings Rating Systems

Authors: Shadi Motamedighazvini, Roohollah Taherkhani, Mahdi Mahdikhani, Najme Hashempour

Abstract:

Nowadays, green building rating systems are an inevitable necessity for managing environmental considerations to achieve green buildings. The aim of this paper is to deliver a detailed recognition of what has been the focus of green building policymakers around the world; It is important to conduct this study in a way that can provide a context for researchers who intend to establish or upgrade existing rating systems. In this paper, fifteen rating systems including four worldwide well-known plus eleven local rating systems which have been selected based on the answers to the questionnaires were examined. Their similarities and differences in mandatory and prerequisite clauses, highest and lowest scores for each criterion, the most frequent criteria, and most frequent sub-criteria are determined. The research findings indicated that although the criteria of energy, water, indoor quality (except Homestar), site and materials (except GRIHA) were common core criteria for all rating systems, their sub-criteria were different. This research, as a roadmap, eliminates the lack of a comprehensive reference that encompasses the key criteria of different rating systems. It shows the local systems need to be revised to be more comprehensive and adaptable to their own country’s conditions such as climate.

Keywords: environmental assessment, green buildings, green building criteria, green building rating systems, sustainability, rating tools

Procedia PDF Downloads 242
1061 Effect of Underwater Antiquities as a Hidden Competitive Advantage of Hotels on Their Financial Performance: An Exploratory Study

Authors: Iman Shawky, Mohamed Elsayed

Abstract:

Every hotel works in the hospitality market tends to have its own merit and character in its products marketing in order to maintain both its brand's identity and image among guests. According to the growth of global competition in the hospitality industry; the concept of competitive advantage is becoming increasingly important in hotels' marketing world as it examines reasons for outweighing hotels in their dimensions of strategic and marketing plans. In fact, Egypt is the land of appeared and submerged secrets as a result of its ancient civilization ongoing explorations. Although underwater antiquities represent ambiguous treasures, they have auspicious future in it, particularly in Alexandria. The study aims at examining to what extent underwater antiquities represent a competitive advantage of four and five-star hotels in Alexandria. For achieving this aim, an exploratory study conducted by currying out the investigation and comparison of the closest and most popular landmarks mentioned on both hotels' official websites and on common used reservations' websites. In addition to that, two different questionnaire forms designed; one for both revenue and sales and marketing hotels' managers while the other for their guests. The results indicate that both official hotels' websites and the most common used reservations' websites totally ignore mentioning underwater antiquities as attractive landmarks surrounding Alexandria hotels. Furthermore, most managers expect that underwater antiquities can furnish distinguished competitive advantage to their hotels. Also, they can help exceeding guests' expectations during their accommodation as long as they included on both official hotels' and reservations' websites as the most surrounding famous landmarks. Moreover, most managers foresee that high awareness of underwater antiquities can enhance the guests' accommodation frequencies and improve the financial performance of their hotels.

Keywords: competitive advantage, financial performance, hotels' websites, underwater antiquities

Procedia PDF Downloads 166
1060 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
1059 Assessment of the Road Safety Performance in National Scale

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country.

Keywords: factor analysis, Multi-criteria analysis, road safety assessment, safe system indicator

Procedia PDF Downloads 270
1058 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181