Search results for: Taguchi parameter design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13924

Search results for: Taguchi parameter design

12604 Area Efficient Carry Select Adder Using XOR Gate Design

Authors: Mahendrapal Singh Pachlaniya, Laxmi Kumre

Abstract:

The AOI (AND – OR- INVERTER) based design of XOR gate is proposed in this paper with less number of gates. This new XOR gate required four basic gates and basic gate include only AND, OR, Inverter (AOI). Conventional XOR gate required five basic gates. Ripple Carry Adder (RCA) used in parallel addition but propagation delay time is large. RCA replaced with Carry Select Adder (CSLA) to reduce propagation delay time. CSLA design with dual RCA considering carry = ‘0’ and carry = ‘1’, so it is not an area efficient adder. To make area efficient, modified CSLA is designed with single RCA considering carry = ‘0’ and another RCA considering carry = ‘1’ replaced with Binary to Excess 1 Converter (BEC). Now replacement of conventional XOR gate by new design of XOR gate in modified CSLA reduces much area compared to regular CSLA and modified CSLA.

Keywords: CSLA, BEC, XOR gate, area efficient

Procedia PDF Downloads 351
12603 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 23
12602 A New Proposed Framework for the Development of Interface Design for Malaysian Interactive Courseware

Authors: Norfadilah Kamaruddin

Abstract:

This paper introduces a new proposed framework for the development process of interface design for Malaysian interactive courseware by exploring four established model in the recent research literature, existing Malaysian government guidelines and Malaysian developers practices. In particular, the study looks at the stages and practices throughout the development process. Significant effects of each of the stages are explored and documented, and significant interrelationships among them suggested. The results of analysis are proposed as potential model that helps in establishing and designing a new version of Malaysian interactive courseware.

Keywords: development processes, interaction with interface, interface design, social sciences

Procedia PDF Downloads 372
12601 Addressing Cultural Discrimination in Research Design: The Responsibilities of Ethics Committees

Authors: Elspeth McInnes

Abstract:

Research design is central to ethical research. Discriminatory research design is a key risk for researchers examining diverse cultural groups without conscious commitment to anti-discrimination values or knowledge of their culture. Culturally discriminatory research design is defined here as research proceeding from negative assumptions about people on the basis of race, colour, ethnicity, nationality or religion. Such discrimination can be direct or indirect. Direct discrimination is the uncritical mobilization of dominant group negative stereotypes of cultural minorities. Indirect discrimination is the examination of policies or programs grounded in dominant culture negative stereotypes that have been uncritically accepted by the researchers. This paper draws on anonymized elements of planned research projects and considers both direct and indirect cultural discrimination in research design and the responsibilities of ethics committees. Human research ethics committees provide a point of scrutiny with responsibility to alert researchers to risks of basing research on negative cultural stereotypes, as well as protecting participants from being subjected to negative discourses about them. This issue has become an increasing concern in a globalizing world of human displacement and migration creating a rise in the presence of minority cultures in host countries. As a nation established through colonization and immigration Australia has a long history of negative cultural stereotypes of Indigenous Australians as well as a legacy of the White Australia policy, which still echoes in attitudes to each wave of non-European immigration. The task of eliminating cultural discrimination in research design is vital to sustaining research integrity and ensuring that research is not used to reinforce or justify cultural discrimination.

Keywords: cultural discrimination, cultural stereotypes, participant risk, research design

Procedia PDF Downloads 124
12600 Flow Control Optimisation Using Vortex Generators in Turbine Blade

Authors: J. Karthik, G. Vinayagamurthy

Abstract:

Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.

Keywords: flow control, vortex generators, design optimisation, CFD

Procedia PDF Downloads 392
12599 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 119
12598 Research on Design Methods for Riverside Spaces of Deep-cut Rivers in Mountainous Cities: A Case Study of Qingshuixi River in Chongqing City

Authors: Luojie Tang

Abstract:

Riverside space is an important public space and ecological corridor in urban areas, but mountainous urban rivers are often overlooked due to their deep valleys and poor accessibility. This article takes the Qing Shui Xi River in Chongqing as an example, and through long-term field inspections, measurements, interviews, and online surveys, summarizes the problems of poor accessibility, limited space for renovation, lack of waterfront facilities, excessive artificial intervention, low average runoff, severe river water pollution, and difficulty in integrated watershed management in riverside space. Based on the current situation and drawing on relevant experiences, this article summarizes the design methods for riverside space in deep valley rivers in mountainous urban areas. Regarding spatial design techniques, the article emphasizes the importance of integrating waterfront spaces into the urban public space system and vertical linkages. Furthermore, the article suggests different design methods and improvement strategies for the already developed areas and new development areas. Specifically, the article proposes a planning and design strategy of "protection" and "empowerment" for new development areas and an updating and transformation strategy of "improvement" and "revitalization" for already developed areas. In terms of ecological restoration methods, the article suggests three focus points: increasing the runoff of urban rivers, raising the landscape water level during dry seasons, and restoring vegetation and wetlands in the riverbank buffer zone while protecting the overall pattern of the watershed. Additionally, the article presents specific design details of the Qingshuixi River to illustrate the proposed design and restoration techniques.

Keywords: deep-cut river, design method, mountainous city, Qingshuixi river in Chongqing, waterfront space design

Procedia PDF Downloads 91
12597 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar

Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures

Keywords: K-feldspar, grinding, automated mineralogy, impurity, leaching

Procedia PDF Downloads 66
12596 Fears of Strangers: Causes of Anonymity Rejection on Virtual World

Authors: Proud Arunrangsiwed

Abstract:

This research is a collaborative narrative research, which is mixed with issues of selected papers and researcher's experience as an anonymous user on social networking sites. The objective of this research is to understand the reasons of the regular users who reject to contact with anonymous users, and to study the communication traditions used in the selected studies. Anonymous users are rejected by regular users, because of the fear of cyber bully, the fear of unpleasant behaviors, and unwillingness of changing communication norm. The suggestion for future research design is to use longitudinal design or quantitative design; and the theory in rhetorical tradition should be able to help develop a strong trust message.

Keywords: anonymous, anonymity, online identity, trust message, reliability

Procedia PDF Downloads 350
12595 Design Optimization of the Primary Containment Building of a Pressurized Water Reactor

Authors: M. Hossain, A. H. Khan, M. A. R. Sarkar

Abstract:

Primary containment structure is one of the five safety layers of a nuclear facility which is needed to be designed in such a manner that it can withstand the pressure and excessive radioactivity during accidental situations. It is also necessary to ensure minimization of cost with maximum possible safety in order to make the design economically feasible and attractive. This paper attempts to identify the optimum design conditions for primary containment structure considering both mechanical and radiation safety keeping the economic aspects in mind. This work takes advantage of commercial simulation software to identify the suitable conditions without the requirement of costly experiments. Generated data may be helpful for further studies.

Keywords: PWR, concrete containment, finite element approach, neutron attenuation, Von Mises stress

Procedia PDF Downloads 172
12594 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies

Authors: Yalda Zarnegarnia, Shari Messinger

Abstract:

Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.

Keywords: biomarker, correlation, familial paired design, ROC curve

Procedia PDF Downloads 227
12593 Optimum Design of Piled-Raft Systems

Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood

Abstract:

This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.

Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations

Procedia PDF Downloads 216
12592 Evaluation of the Digitalization in Graphic Design in Turkey

Authors: Veysel Seker

Abstract:

Graphic designing and virtual reality have been affected by digital development and technological development for the last decades. This study aims to compare and evaluate digitalization and virtual reality evaluation in traditional and classical methods of the graphic designing sector in Turkey. The qualitative and quantitative studies and research were discussed and identified according to the evaluated results of the literature surveys. Moreover, the study showed that the competency gap between graphic design schools and the field should be determined and well-studied. The competencies of traditional graphic designers will have a big challenge for the purpose of the transition into the developed and evaluated digital graphic design world.

Keywords: digitalization, evaluation, graphic designing, virtual reality

Procedia PDF Downloads 131
12591 Exploration of Two Selected Sculptural Forms in the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, Nigeria as Motifs for Wax Print Pattern and Design

Authors: Adeoti Adebowale, Abduljaleel, Ejiogu Fidelis Onyekwo

Abstract:

Form and image development are fundamental to creative expression in visual arts. The form is an element that distinguishes the difference between two-dimension and three-dimension among the branches of visual arts. Particularly, the sculpture is a three-dimensional form, while the textile design is a two-dimensional form of its visual appearance. The visual expression of each of them is embedded in the creative practice of the artist, which is easily understood and interpreted by the viewer. In this research, an attempt is made to explore and analyse sculptural forms adopted as a motif for wax print in textile design, aiming at breeding yet another pattern and motif suitable for various design uses. For instance, the dynamics of sculptural form adaptation into other areas of creativity, such as architecture, pictorial arts and pottery, as well as automobile bodies, is a discernible image everywhere. The research is studio exploratory, while a camera and descriptive analysis were used to process the data. Two sculptural forms were adopted from the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, in this study due to the uniqueness of their technique of execution. The findings resulted in ten (10) paper designs showing the dexterity of studio practice in the development of design for various fashion and textile uses. However, the paper concludes that sculptural form is a source of inspiration for generating design concepts for a textile designer.

Keywords: exploration, design, motifs, sculptural forms, wax print

Procedia PDF Downloads 57
12590 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft

Authors: Nauman Idrees

Abstract:

Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.

Keywords: fly-by-wire, flight controls system, model based design, Simulink

Procedia PDF Downloads 106
12589 Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications

Authors: Jaswinder Kaur, Nitika, Navneet Kaur, Rajesh Khanna

Abstract:

A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results.

Keywords: design of experiments, hand fan shaped MPA, L-Band, orthogonal design method, S-Band

Procedia PDF Downloads 121
12588 A Proper Design of Wind Turbine Grounding Systems under Lightning

Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said

Abstract:

Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.

Keywords: WTs, Lightning Protection Systems (LPS), GPR, grounding system, mitigating techniques

Procedia PDF Downloads 362
12587 Campus Signage and Wayfinding Design Guidelines: Challenges of Visual Literacy in University of Port Harcourt

Authors: Kasi Jockeil-Ojike

Abstract:

The study of signage and wayfinding design guidelines is to provide consistent, coherent, and comprehensive guidelines for all type of signage design that may be applied to guide persons from the freeway into campus, and to specific building. As the world becomes more complex and the population increases, people increasingly rely on signage and wayfinding systems to navigate their way in built environment such as university campus. This paper will demonstrate and discuss signage and wayfinding, and the importance of visual literacy in university campuses. It discusses the process of wayfinding and signage, how poor signage and wayfinding systems affect people when navigating, and why wayfinding is more than just signage. Hence, this paper tries to examine the design guideline that primarily addresses the signage and wayfinding system that improves visual literacy within University of Port Harcourt multi-campuses. In doing this, the paper explore the environmental graphic design senori-emotional values and communicative information theories that takes the subjectivity of the observer in account. By making these connections, the paper will also determine what University of Port Harcourt need to focus on to be counted in the global trends, using developed visual communication guidelines based on previous studies or concept from professional. In conclusion, information about why physical structures (buildings and waypaths) on University of Port Harcourt multiple campuses need to be branded in self-communicative manner using signage and wayfinding design as integral part of its physical planning policy is recommended.

Keywords: campus-signage, movement, visual-literacy, wayfinding-guidelines

Procedia PDF Downloads 428
12586 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.

Keywords: information entropy, structural optimization, truss structure, whale algorithm

Procedia PDF Downloads 236
12585 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 412
12584 Effective Design Factors for Bicycle-Friendly Streets

Authors: Zohreh Asadi-Shekari, Mehdi Moeinaddini, Muhammad Zaly Shah, Amran Hamzah

Abstract:

Bicycle level of service (BLOS) is a measure for evaluating street conditions for cyclists. Currently, various methods are proposed for BLOS. These analytical methods however have some drawbacks: they usually assume cyclists as users that can share street facilities with motorized vehicles, it is not easy to link them to design process and they are not easy to follow. In addition, they only support a narrow range of cycling facilities and may not be applicable for all situations. Along this, the current paper introduces various effective design factors for bicycle-friendly streets. This study considers cyclists as users of streets who have special needs and facilities. Therefore, the key factors that influence BLOS based on different cycling facilities that are proposed by developed guidelines and literature are identified. The combination of these factors presents a complete set of effective design factors for bicycle-friendly streets. In addition, the weight of each factor in existing BLOS models is estimated and these effective factors are ranked based on these weights. These factors and their weights can be used in further studies to propose special bicycle-friendly street design model.

Keywords: bicycle level of service, bicycle-friendly streets, cycling facilities, rating system, urban streets

Procedia PDF Downloads 475
12583 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach

Abstract:

This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: dual-band antenna, fractal antenna, GPS band, modified ground structure, sierpinski triangle, WiMAX band

Procedia PDF Downloads 436
12582 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 159
12581 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex

Procedia PDF Downloads 518
12580 A User Centred Based Approach for Designing Everyday Product: A Case Study of an Alarm Clock

Authors: Obokhai Kess Asikhia

Abstract:

This work explores design concept generation by understanding user needs through observation and interview. The aim is to examine several principles and guidelines in obtaining evidence from observing how users interact with the targeted product and interviewing them to acquire deep insights of their needs. With the help of Quality Function Deployment (QFD), the identified needs of the users while interacting with the product were ranked using the normalised weighting approach. Furthermore, a low fidelity prototype of the alarm clock is developed with a view of addressing the identified needs of the users. Finally, the low fidelity prototype design was evaluated with two design prototypes already existing in the market through a study involving 30 participants. Preliminary results reveal higher performance ratings by the majority of the participants of the new prototype compared to the other existing alarm clocks in the market used in the study.

Keywords: design concept, low fidelity prototype, normalised weighting approach, quality function deployment, user needs

Procedia PDF Downloads 171
12579 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars

Authors: Shahrad Ebrahimzadeh

Abstract:

Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and offering a higher structural efficiency compared to solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCB) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs to be further investigated is the replacement of steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of GFRP bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.

Keywords: design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength

Procedia PDF Downloads 181
12578 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 350
12577 Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals

Authors: Alok Shiomurti Tripathi, Ajay Kumar Timiri, Papiya Mitra Mazumder, Anil Chandewar

Abstract:

The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies.

Keywords: diabetic nephropathy, glimepiride, sildenafil citrate, pharmacokinetics, homology modeling, schrodinger

Procedia PDF Downloads 365
12576 Investigating the Effect of VR, Time Study and Ergonomics on the Design of Industrial Workstations

Authors: Aydin Azizi, Poorya Ghafoorpoor Yazdi

Abstract:

This paper presents the review of the studies on the ergonomics, virtual reality, and work measurement (time study) at the industrial workstations because each of these three individual techniques can be used to improve the design of workstations and task position. The objective of this paper is to give an overall literature review that if there is any relation between these three different techniques. Therefore, it is so important to review the scientific studies to find a better and effective way for improving design of workstations. On the other hand, manufacturers found that instead of using one of the approaches, utilizing the combination of these individual techniques are more effective to reduce the cost and production time.

Keywords: ergonomics, time study, virtual reality, workplace

Procedia PDF Downloads 113
12575 Developing API Economy: Associating Value to APIs and Microservices in an Enterprise

Authors: Mujahid Sultan

Abstract:

The IT industry has seen many transformations in the Software Development Life Cycle (SDLC) methodologies and development approaches. SDLCs range from waterfall to agile, and the development approaches from monolith to microservices. Management, orchestration, and monetization of microservices have created an API economy in the modern enterprise. There are two approaches to API design, code first and design first. Design first is gaining popularity in the industry as this allows capturing the API needs from the stakeholders rather than the development teams guesstimating the needs and associating a monetary value with the APIs and microservices. In this publication, we describe an approach to organizing and creating stakeholder needs and requirements for designing microservices and APIs.

Keywords: requirements engineering, enterprise architecture, APIs, microservices, DevOps, continuous delivery, continuous integration, stakeholder viewpoints

Procedia PDF Downloads 182