Search results for: solar panel efficiency technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13721

Search results for: solar panel efficiency technique

311 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 149
310 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia

Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud

Abstract:

Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.

Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma

Procedia PDF Downloads 44
309 Development of an Automatic Control System for ex vivo Heart Perfusion

Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala

Abstract:

Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.

Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller

Procedia PDF Downloads 147
308 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 111
307 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 248
306 Re-Framing Resilience Turn in Risk and Management with Anti-Positivistic Perspective of Holling's Early Work

Authors: Jose CanIzares

Abstract:

In the last decades, resilience has received much attention in relation to understanding and managing new forms of risk, especially in the context of urban adaptation to climate change. There are abundant concerns, however, on how to best interpret resilience and related ideas, and on whether they can guide ethically appropriate risk-related or adaptation efforts. Narrative creation and framing are critical steps in shaping public discussion and policy in large-scale interventions, since they favor or inhibit early decision and interpretation habits, which can be morally sensitive and then become persistent on time. This article adds to such framing process by contesting a conventional narrative on resilience and offering an alternative one. Conventionally, present ideas on resilience are traced to the work of ecologist C. S. Holling, especially to his article Resilience and Stability in Ecosystems. This article is usually portrayed as a contribution of complex systems thinking to theoretical ecology, where Holling appeals to resilience in order to challenge received views on ecosystem stability and the diversity-stability hypothesis. In this regard, resilience is construed as a “purely scientific”, precise and descriptive concept, denoting a complex property that allows ecosystems to persist, or to maintain functions, after disturbance. Yet, these formal features of resilience supposedly changed with Holling’s later work in the 90s, where, it is argued, Holling begun to use resilience as a more pragmatic “boundary term”, aimed at unifying transdisciplinary research about risks, ecological or otherwise, and at articulating public debate and governance strategies on the issue. In the conventional story, increased vagueness and degrees of normativity are the price to pay for this conceptual shift, which has made the term more widely usable, but also incompatible with scientific purposes and morally problematic (if not completely objectionable). This paper builds on a detailed analysis of Holling’s early work to propose an alternative narrative. The study will show that the “complexity turn” has often entangled theoretical and pragmatic aims. Accordingly, Holling’s primary aim was to fight what he termed “pathologies of natural resource management” or “pathologies of command and control management”, and so, the terms of his reform of ecosystem science are partly subordinate to the details of his proposal for reforming the management sciences. As regards resilience, Holling used it as a polysemous, ambiguous and normative term: sometimes, as an instrumental value that is closely related to various stability concepts; other times, and more crucially, as an intrinsic value and a tool for attacking efficiency and instrumentalism in management. This narrative reveals the limitations of its conventional alternative and has several practical advantages. It captures well the structure and purposes of Holling’s project, and the various roles of resilience in it. It helps to link Holling’s early work with other philosophical and ideological shifts at work in the 70s. It highlights the currency of Holling’s early work for present research and action in fields such as risk and climate adaptation. And it draws attention to morally relevant aspects of resilience that the conventional narrative neglects.

Keywords: resilience, complexity turn, risk management, positivistic, framing

Procedia PDF Downloads 141
305 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 153
304 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides

Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir

Abstract:

Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.

Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease

Procedia PDF Downloads 53
303 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 42
302 Local Governance Systems for Value Chains' Promotion: A Chance for Rural Development in Tunisia

Authors: Neil Fourati

Abstract:

Collaboration between public and private stakeholders for agricultural development are today lacking in Tunisia. The last dictatorship witnessed by the country has deteriorated the necessary trust between the state and small farmers for the realization of development projects, in particular in the interior, disadvantaged regions of the country. These regions, where the youth unemployment rate is above 30%, have been the heart of the uprising that preceded the revolution. The transitional period that the country is going through since 2011 is an opportunity for the emergence of new governance systems in the context of the decentralization. The latter is recognized in the 2nd Tunisian Republic constitution as the basis of regional management. Civil society participation to the decision-making process is considered as a mean to identify measures that are more coherent with local populations’ needs. The development of agriculture and food value chains in rural areas is relevant within the framework of the implementation of new decisions systems that require public-private collaborations. These new systems can lead to actions in favor of improving living conditions of rural populations. The diverisification of activities around agriculture can be a solution for job creation and local value creation. The project for the promotion of sustainable agriculture and rural development in Tunisia has designed and implemented a multi-stakeholder dialogue process for the development of local value chains platforms in disadvantaged areas of the country. The platforms gather public and private organizations ; as well civil society organizations ; that intervene in a locality in relation to the production transformation or product’s commercialization. The role of these platforms is to formulate realize and evaluate collaborative actions or projects for the promotion of the concerned product and territory. The dialogue process steps allow to create the necessary collaboration conditions in order to promote viable collectivities, dynamic economies and healthy environments. Effectively, the dialogue process steps allow to identify the local leaders. These leaders recognize the development constraints and opportunities. They deal with key and gathering subjects around the collaborative projects or actions. They take common decisions in order to create effective coalitions for the implementation of common actions. The plateforms realize quick success so as to build trust. The project has supported the formulation of 22 collaborative projects. Seven priority collaborative projects have been realized. Each collaborative project includes 3 parts : the signature of the collaboration conventions between public and private organizations, investment in the relevant material in order to increase productivity and the quality of local and products and finally management and technical training in favour of producers’ organizations for the promotion of local products. The implementation of this process has enabled to enhance the capacities of collaboration between local actors : producers, traders, processors and support structures from public sector and civil society. It also allowed to improve the efficiency and relevance of actions and measures for agriculture and rural development programs. Thus, the process for the development of local value chain platform is a basis for sustainable development of agriculture.

Keywords: governance, public private collaboration, rural development, value chains

Procedia PDF Downloads 255
301 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 303
300 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 90
299 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 88
298 An eHealth Intervention Using Accelerometer- Smart Phone-App Technology to Promote Physical Activity and Health among Employees in a Military Setting

Authors: Emilia Pietiläinen, Heikki Kyröläinen, Tommi Vasankari, Matti Santtila, Tiina Luukkaala, Kai Parkkola

Abstract:

Working in the military sets special demands on physical fitness, however, reduced physical activity levels among employees in the Finnish Defence Forces (FDF), a trend also being seen among the working-age population in Finland, is leading to reduced physical fitness levels and increased risk of cardiovascular and metabolic diseases, something which also increases human resource costs. Therefore, the aim of the present study was to develop an eHealth intervention using accelerometer- smartphone app feedback technique, telephone counseling and physical activity recordings to increase physical activity of the personnel and thereby improve their health. Specific aims were to reduce stress, improve quality of sleep and mental and physical performance, ability to work and reduce sick leave absences. Employees from six military brigades around Finland were invited to participate in the study, and finally, 260 voluntary participants were included (66 women, 194 men). The participants were randomized into intervention (156) and control groups (104). The eHealth intervention group used accelerometers measuring daily physical activity and duration and quality of sleep for six months. The accelerometers transmitted the data to smartphone apps while giving feedback about daily physical activity and sleep. The intervention group participants were also encouraged to exercise for two hours a week during working hours, a benefit that was already offered to employees following existing FDF guidelines. To separate the exercise done during working hours from the accelerometer data, the intervention group marked this exercise into an exercise diary. The intervention group also participated in telephone counseling about their physical activity. On the other hand, the control group participants continued with their normal exercise routine without the accelerometer and feedback. They could utilize the benefit of being able to exercise during working hours, but they were not separately encouraged for it, nor was the exercise diary used. The participants were measured at baseline, after the entire intervention period, and six months after the end of the entire intervention. The measurements included accelerometer recordings, biochemical laboratory tests, body composition measurements, physical fitness tests, and a wide questionnaire focusing on sociodemographic factors, physical activity and health. In terms of results, the primary indicators of effectiveness are increased physical activity and fitness, improved health status, and reduced sick leave absences. The evaluation of the present scientific reach is based on the data collected during the baseline measurements. Maintenance of the studied outcomes is assessed by comparing the results of the control group measured at the baseline and a year follow-up. Results of the study are not yet available but will be presented at the conference. The present findings will help to develop an easy and cost-effective model to support the health and working capability of employees in the military and other workplaces.

Keywords: accelerometer, health, mobile applications, physical activity, physical performance

Procedia PDF Downloads 172
297 Participatory Action Research with Social Workers: The World Café Method to Share Critical Reflections and Possible Solutions on Working Practices in Migration Contexts

Authors: Ilaria Coppola, Davide Lacqua, Nadia Ranìa

Abstract:

Over the past two decades, migration has gained central importance in the global landscape. Europe hosts the largest number of migrants, totaling 92.9 million people, approximately 37.4 million of whom are regular residents within the European Union's borders. Reception services and different modes of management have received increasing attention precisely because of the complexity of the phenomenon, which necessarily impacts the wider community. Indeed, opening a reception center in an area entails major challenges for that context, for the community that inhabits it, and for the people who use that service. Questioning the strategies needed to offer a functional reception service means listening to the different actors involved who daily face the difficulties involved in working in the field. Recognizing the importance of the professional figures who work closely with migrant people, each with their own specific experiences has led researchers to study and analyze the different types of reception centers and their management. This has led to the development of intervention models and best practices in various countries. However, research from this perspective is still limited, especially in Italy. From this theoretical framework, this study aims to bring out an innovative qualitative tool, such as the world café, the work experiences of 29 social workers working in shelters in the Italian context. Most of the participants were female and lived in the Northwest regions of Italy. Through this tool, the aim was to bring out and share reflections on the critical issues encountered in working in reception centers, with a view to identifying possible solutions for better management of services. The World café represents a tool used in participatory action research that promotes dialogue among participants through the sharing of reflections and ideas. In fact, from critical reflections, participants are invited to identify and share possible solutions to provide a more functional service with benefits to the entire community. Therefore, this research, through the innovative technique of the World café, aims to promote critical thinking processes that can help participants find solutions that can be introduced into their work contexts or proposed to decision-makers. Specifically, the findings shed light on several issues, including complex bureaucratic procedures, insufficient project planning, and inefficiencies in the services provided to migrants. These concerns collectively contribute to what participants perceive as a disorganized and uncoordinated system. In addition, the study explores potential solutions that promote more efficient networking practices, coordinated project management, and a more positive approach to cultural diversity. The main results obtained will be discussed with a focus on critical reflections and possible solutions identified.

Keywords: participatory action research, world café method, reception services, migration contexts, social workers, Italy

Procedia PDF Downloads 35
296 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products

Authors: Andrew Gray, Zhibing Zhang

Abstract:

The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.

Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour

Procedia PDF Downloads 114
295 The Perceptions of Patients with Osteoarthritis at a Public Community Rehabilitation Centre in the Cape Metropole for Using Digital Technology in Rehabilitation

Authors: Gabriela Prins, Quinette Louw, Dawn Ernstzen

Abstract:

Background: Access to rehabilitation services is a major challenge globally, especially in low-and-middle income countries (LMICs) where resources and infrastructure are extremely limited. Telerehabilitation (TR) has emerged in recent decades as a highly promising method to dramatically expand accessibility to rehabilitation services globally. TR provides rehabilitation care remotely using communication technologies such as video conferencing, smartphones, and internet-connected devices. This boosts accessibility to underprivileged regions and allows for greater flexibility for patients. Despite this, TR is hindered by several factors, including limited technological resources, high costs, lack of digital access, and the unavailability of healthcare systems, which are major barriers to widespread adoption among LMIC patients. These barriers have collectively hindered the potential implementation and adoption of TR services in LMICs healthcare settings. Adoption of TR will also require the buy-in of end users and limited information is known on the perspectives of the SA population. Aim: The study aimed to understand patients' perspectives regarding the use of digital technology as part of their OA rehabilitation at a public community healthcare centre in the Cape Metropole Area. Methods: A qualitative descriptive study design was used on 10 OA patients from a public community rehabilitation centre in South Africa. Data collection included semi-structured interviews and patient-reported outcome measures (PSFS, ASES-8, and EuroQol EQ-5D-5L) on functioning and quality of life. Transcribed interview data were coded in Atlas.ti. 22.2 and analyzed using thematic analysis. The results were narratively documented. Results: Four themes arose from the interviews. The themes were Telerehabilitation awareness (Use of Digital Technology Information Sources and Prior Experience with Technology /TR), Telerehabilitation Benefits (Access to healthcare providers, Access to educational information, Convenience, Time and Resource Efficiency and Facilitating Family Involvement), Telerehabilitation Implementation Considerations (Openness towards TR Implementation, Learning about TR and Technology, Therapeutic relationship, and Privacy) and Future use of Telerehabilitation (Personal Preference and TR for the next generation). The ten participants demonstrated limited awareness and exposure to TR, as well as minimal digital literacy and skills. Skepticism was shown when comparing the effectiveness of TR to in-person rehabilitation and valued physical interactions with health professionals. However, some recognized potential benefits of TR for accessibility, convenience, family involvement and improving community health in the long term. Willingness existed to try TR with sufficient training. Conclusion: With targeted efforts addressing identified barriers around awareness, technological literacy, clinician readiness and resource availability, perspectives on TR may shift positively from uncertainty towards endorsement of this expanding approach for simpler rehabilitation access in LMICs.

Keywords: digital technology, osteoarthritis, primary health care, telerehabilitation

Procedia PDF Downloads 43
294 Managing the Blue Economy and Responding to the Environmental Dimensions of a Transnational Governance Challenge

Authors: Ivy Chen XQ

Abstract:

This research places a much-needed focus on the conservation of the Blue Economy (BE) by focusing on the design and development of monitoring systems to track critical indicators on the status of the BE. In this process, local experiences provide an insight into important community issues, as well as the necessity to cooperate and collaborate in order to achieve sustainable options. Researchers worldwide and industry initiatives over the last decade show that the exploitation of marine resources has resulted in a significant decrease in the share of total allowable catch (TAC). The result has been strengthening law enforcement, yet the results have shown that problems were related to poor policies, a lack of understanding of over-exploitation, biological uncertainty and political pressures. This reality and other statistics that show a significant negative impact on the attainment of the Sustainable Development Goals (SDGs), warrant an emphasis on the development of national M&E systems, in order to provide evidence-based information, on the nature and scale of especially transnational fisheries crime and under-sea marine resources in the BE. In particular, a need exists to establish a compendium of relevant BE indicators to assess such impact against the SDGs by using selected SDG indicators for this purpose. The research methodology consists of ATLAS.ti qualitative approach and a case study will be developed of Illegal, unregulated and unreported (IUU) poaching and Illegal Wildlife Trade (IWT) as component of the BE as it relates to the case of abalone in southern Africa and Far East. This research project will make an original contribution through the analysis and comparative assessment of available indicators, in the design process of M&E systems and developing indicators and monitoring frameworks in order to track critical trends and tendencies on the status of the BE, to ensure specific objectives to be aligned with the indicators of the SDGs framework. The research will provide a set of recommendations to governments and stakeholders involved in such projects on lessons learned, as well as priorities for future research. The research findings will enable scholars, civil society institutions, donors and public servants, to understand the capability of the M&E systems, the importance of showing multi-level governance, in the coordination of information management, together with knowledge management (KM) and M&E at the international, regional, national and local levels. This coordination should focus on a sustainable development management approach, based on addressing socio-economic challenges to the potential and sustainability of BE, with an emphasis on ecosystem resilience, social equity and resource efficiency. This research and study focus are timely as the opportunities of the post-Covid-19 crisis recovery package will be grasped to set the economy on a path to sustainable development in line with the UN 2030 Agenda. The pandemic raises more awareness for the world to eliminate IUU poaching and illegal wildlife trade (IWT).

Keywords: Blue Economy (BE), transnational governance, Monitoring and Evaluation (M&E), Sustainable Development Goals (SDGs).

Procedia PDF Downloads 156
293 Students Awareness on Reproductive Health Education in Sri Lanka

Authors: Ayomi Indika Irugalbandara

Abstract:

Reproductive Health (RE) education among Sri Lankan Adolescents (comprising one fifth inner population) remains unsatisfactory despite 91.8% of them completing primary education & 56.2 % receiving post secondary level education. The main reason for this large population not receiving satisfactory RH education is traditional values and longstanding taboos surrounding sexuality. The current study was undertaken with there objectives. The relevance of achieving them being to formulate RH educational policies and programs that address a sizable and sensitive chunk of the population thereby achieving the goal of mental and social well being and not merely the absence of reproductive disease or infirmity. This research was a descriptive study, using random sampling technique, sample of the study consisting of 160 adolescent in the age group of 16-19, studying in government schools in Sri Lanka. Questionnaire was the main instrument of data collection, qualitative and quantitative techniques were used in data analysis. According to the data it was revealed that a majority has some idea about RH education. While this awareness had been provided by the school, the source of information had been Health and Physical Education. The entire sample mentioned that more RH information, than was provided, should be given and everybody wanted further knowledge regarding sexuality, and in depth information on it was essential. About 96 adolescents were of the opinion that their behavior was respectful to elders and 64 felt embarrassed while communicating with elders regarding RH issues. About their preferred sources of information, both genders named health providers as their first choice, followed by family members and friends. The internet was cited by a few boys; less than 5 percent cited religious figures. More than 50% of respondents had no knowledge about abortion and they were unaware of dangerous abortion. The practice of abortion was reported among zero percent. Although every member of the sample did not possess knowledge of the scientific process involved in abortion, all of them totally rejected the idea of destroying a foetus. Adolescence is a critical period in the life of girls and boys and sexuality education empowers young people to protect their health and well-being. Schools have the proper staff, and environment for learning. It might be stated that the greater segment of individuals entering adolescents and going through their adolescence are still in the school. This becomes the reason why it is mandatory that the school should be geared to handle this critical stage of the students. Adolescents or those approaching adolescence are best educated by the relevant parents, but this being quite a sensitive issue in the socio cultural context, it is somewhat doubtful whether all parents are prepared to handle this candidly, due either to lack of knowledge or absence of the appropriate state of mind. As such it is best that seminars/workshops be conducted to enlighten parents on handling HR issues related to their adolescent children. Apart from the awareness on HR provided through the school curriculum a greater impact can be brought about through street dramas, exhibitions etc. specific to HR. Finally the researcher would like to suggest that Sunday schools be harnessed for the provision of HR education linked with cultural values, ethics, and social well-being.

Keywords: reproductive health, awareness, perception, school curriculum

Procedia PDF Downloads 521
292 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 246
291 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 113
290 Nanocomplexes on the Base of Triterpene Saponins Isolated from Glycyrrhiza glabra and Saponaria officinalis Plants as an Efficient Adjuvants for Influenza Vaccine Use

Authors: Vladimir Berezin, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Aizhan Turmagambetova, Irina Zaitseva, Nadezhda Sokolova, Elmira Omirtaeva

Abstract:

Introduction: Triterpene saponins of plant origin are one of the most promising candidates for elaboration of novel adjuvants. Due to the combination of immunostimulating activity and the capacity interact with amphipathic molecules with formation of highly immunogenic nanocomplexes, triterpene saponins could serve as a good adjuvant/delivery system for vaccine use. In the research presented adjuvants on the base of nanocomplexes contained triterpene saponins isolated from Glycyrrhiza glabra and Saponaria officinalis plants indigenous to Kazakhstan were elaborated for influenza vaccine use. Methods: Purified triterpene saponins 'Glabilox' and 'SO1' with low toxicity and high immunostimulatory activity were isolated from plants Glycyrrhiza glabra L. and Saponaria officinalis L. by high-performance liquid chromatography (HPLC) and identified using electrospray ionization mass spectrometry (ESI-MS). Influenza virus A/St-Petersburg/5/09 (H1N1) propagated in 9-days old chicken embryos was concentrated and purified by centrifugation in sucrose gradient. Nanocomplexes contained lipids, and triterpene saponins Glabilox or SO1 were prepared by dialysis technique. Immunostimulating activity of experimental vaccine preparations was studied in vaccination/challenge experiments in mice. Results: Humoral and cellular immune responses and protection against influenza virus infection were examined after single subcutaneous and intranasal immunization. Mice were immunized subunit influenza vaccine (HA+NA) or whole virus inactivated influenza vaccine in doses 3.0/5.0/10.0 µg antigen/animal mixed with adjuvant in dose 15.0 µg/animal. Sera were taken 14-21 days following single immunization and mice challenged by A/St-Petersburg/5/09 influenza virus in dose 100 EID₅₀. Study of experimental influenza vaccine preparations in animal immunization experiments has shown that subcutaneous and intranasal immunization with subunit influenza vaccine mixed with nanocomplexes contained Glabilox or SO1 saponins stimulated high levels of humoral immune response (IgM, IgA, IgG1, IgG2a, and IgG2b antibody) and cellular immune response (IL-2, IL-4, IL-10, and IFN-γ cytokines) and resulted 80-90% protection against lethal influenza infection. Also, single intranasal and single subcutaneous immunization with whole virus inactivated influenza vaccine mixed with nanoparticulated adjuvants stimulated high levels of humoral and cellular immune responses and provided 100% protection against lethal influenza infection. Conclusion: The results of study have shown that nanocomplexes contained purified triterpene saponins Glabilox and SO1 isolated from plants indigenous to Kazakhstan can stimulate a broad spectrum of humoral and cellular immune responses and induce protection against lethal influenza infection. Both elaborated adjuvants are promising for incorporation to influenza vaccine intended for subcutaneous and intranasal routes of immunization.

Keywords: influenza vaccine, adjuvants, triterpene saponins, immunostimulating activity

Procedia PDF Downloads 110
289 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 197
288 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 146
287 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 240
286 Cultural Competence in Palliative Care

Authors: Mariia Karizhenskaia, Tanvi Nandani, Ali Tafazoli Moghadam

Abstract:

Hospice palliative care (HPC) is one of the most complicated philosophies of care in which physical, social/cultural, and spiritual aspects of human life are intermingled with an undeniably significant role in every aspect. Among these dimensions of care, culture possesses an outstanding position in the process and goal determination of HPC. This study shows the importance of cultural elements in the establishment of effective and optimized structures of HPC in the Canadian healthcare environment. Our systematic search included Medline, Google Scholar, and St. Lawrence College Library, considering original, peer-reviewed research papers published from 1998 to 2023 to identify recent national literature connecting culture and palliative care delivery. The most frequently presented feature among the articles is the role of culture in the efficiency of the HPC. It has been shown frequently that including the culturespecific parameters of each nation in this system of care is vital for its success. On the other hand, ignorance about the exclusive cultural trends in a specific location has been accompanied by significant failure rates. Accordingly, implementing a culture-wise adaptable approach is mandatory for multicultural societies. The following outcome of research studies in this field underscores the importance of culture-oriented education for healthcare staff. Thus, all the practitioners involved in HPC will recognize the importance of traditions, religions, and social habits for processing the care requirements. Cultural competency training is a telling sample of the establishment of this strategy in health care that has come to the aid of HPC in recent years. Another complexity of the culturized HPC nowadays is the long-standing issue of racialization. Systematic and subconscious deprivation of minorities has always been an adversity of advanced levels of care. The last part of the constellation of our research outcomes is comprised of the ethical considerations of culturally driven HPC. This part is the most sophisticated aspect of our topic because almost all the analyses, arguments, and justifications are subjective. While there was no standard measure for ethical elements in clinical studies with palliative interventions, many research teams endorsed applying ethical principles for all the involved patients. Notably, interpretations and projections of ethics differ in varying cultural backgrounds. Therefore, healthcare providers should always be aware of the most respectable methodologies of HPC on a case-by-case basis. Cultural training programs have been utilized as one of the main tactics to improve the ability of healthcare providers to address the cultural needs and preferences of diverse patients and families. In this way, most of the involved health care practitioners will be equipped with cultural competence. Considerations for ethical and racial specifications of the clients of this service will boost the effectiveness and fruitfulness of the HPC. Canadian society is a colorful compilation of multiple nationalities; accordingly, healthcare clients are diverse, and this divergence is also translated into HPC patients. This fact justifies the importance of studying all the cultural aspects of HPC to provide optimal care on this enormous land.

Keywords: cultural competence, end-of-life care, hospice, palliative care

Procedia PDF Downloads 53
285 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 197
284 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 129
283 Intervention To Prevent Infections And Reinfections With Intestinal Parasites In People Living With Human Immunodeficiency Virus In Some Parts Of Eastern Cape, South Africa

Authors: Ifeoma Anozie, Teka Apalata, Dominic Abaver

Abstract:

Introduction: Despite use of Anti-retroviral therapy to reduce the incidence of opportunistic infections among HIV/AIDS patients, rapid episodes of re-infection after deworming are still common occurrences because pharmaceutical intervention alone does not prevent reinfection. Unsafe water and inadequate personal hygiene and parasitic infections are widely expected to accelerate the progression of HIV infection. This is because the chronic immunosuppression of HIV infection encourages susceptibility to opportunistic (including parasitic) infections which is linked to CD4+ cell count of <200 cells/μl. Intestinal parasites such as G. intestinalis and Entamoeba spp are ubiquitous protozoa that remain infectious over a long time in an environment and show resistance to standard disinfection. To control re-infection, the social factors that underpin the prevention need to be controlled. This study aims at prevention of intestinal parasites in people living with HIV/AIDS by using a treatment, hygiene education and sanitation (THEdS) bundle approach. Methods: This study was conducted in four clinics (Ngangelizwe health centre, Tsolo gateway clinic, Idutywa health centre and Nqamakwe health centre) across the seven districts in Eastern cape, South Africa. The four clinics were divided in two: experimental and control, for the purpose of intervention. Data was collected from March 2019 to February 2020. Six hundred participants were screened for intestinal parasitic infections. Stool samples were collected and analysed twice: before (Pre-test infection screening) and after (Post-test re-infection) THEdS bundle intervention. The experimental clinics received full intervention package, which include therapeutic treatment, health education on personal hygiene and sanitation training, while the control clinics received only therapeutic treatment for those found with intestinal parasitic infections. Results: Baseline prevalence of Intestinal Parasites isolated shows 12 intestinal parasites with overall frequency of 65, with Ascaris lumbricoides having most frequency (44.6%). The intervention had a cure rate of 60%, with odd ratio of 1.42, which indicates that the intervention group is 1.42 times more likely of parasite clearing as compared to the control group. The relative risk ratio of 1.17 signifies that there is 1.17 times more likelihood to clear intestinal parasite if there no intervention. Discussion and conclusion: Infection with multiple parasites can cause health defects, especially among HIV/AIDS patients. Efficiency of some HIV vaccines in HIV/AIDS patients is affected because treatment of re-infection amplifies drug resistance, affects the efficacy of the front-line drugs, and still permits transmission. In South Africa, treatment of intestinal parasites is usually offered to clinic attending HIV/AIDS patients upon suspicion but not as a mandate for patients being initiated into Antiretroviral (ART) program. The effectiveness of THEdS bundle advocates for inclusiveness of mandatory screening for intestinal parasitic infections among attendees of HIV/Aids clinics on regular basis.

Keywords: cure rate, , HIV/AIDS patients, intestinal parasites, intervention studies, reinfection rate

Procedia PDF Downloads 52
282 Evaluation of Wheat Varieties for Water Use Efficiency under Staggering Sowing Times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, S. S. Parihar

Abstract:

With the rise in temperature during reproductive phase and moisture stress, winter wheat yields are likely to decrease because of limited plant growth, higher rate of night respiration, higher spikelet sterility or number of grains per spike and restricted embryo development thereby reducing grain number. Crop management practices play a pivotal role in minimizing adverse effects of terminal heat stress on wheat production. Amongst various agronomic management practices, adjusting sowing date, crop cultivars and irrigation scheduling have been realized to be simple yet powerful, implementable and eco-friendly mitigation strategies to sustain yields under elevated temperature conditions. Taking into account, large variability in wheat production in space and time, a study was conducted to identify the suitable wheat varieties under both early and late planting with suitable irrigation schedule for minimizing terminal heat stress effect and thereby improving wheat production. Experiments were conducted at research farms of Indian Agricultural Research Institute, New Delhi, India, separately for timely and late sown conditions with suitable varieties with staggering dates of sowing from 1st November to 30th November in case of timely sown and from 1st December to 31st December for late sown condition. The irrigation schedule followed for both the experiments were 100% of ETc (evapotranspiration of crop), 80% of ETc and 60% of ETc. Results of the timely sown experiment indicated that 1st November sowing resulted in higher grain yield followed by 10th November. However, delay in sowing thereafter resulted in gradual decrease in yield and the maximum reduction was noticed under 30th November sowing. Amongst the varieties, HD3086 produced higher grain yield compared to other varieties. Irrigation applied based on 100% of ETc gave higher yield comparable to 80% of ETc but both were significantly higher than 60% of ETc. It was further observed that even liberal irrigation under 100% of ETc could not compensate the yield under delayed sowing suggesting that rise in temperature beyond January adversely affected the growth and development of crop as well as forced maturity resulting in significant reduction of yield attributing characters due to terminal heat stress. Similar observations were recorded under late sown experiment too. Planting on 1st December along with 100% ETc of irrigation schedule resulted in significantly higher grain yield as compared to other dates and irrigation regimes. Further, it was observed that reduction in yield under late sown conditions was significantly large than the timely sown conditions irrespective of the variety grown and irrigation schedule followed. Delayed sowing resulted in reducing crop growth period and forced maturity in turn led to significant deterioration in all the yield attributing characters and there by reduction in yield suggesting that terminal heat stress had greater impact on yield under late sown crop than timely sown due to temperature rise coinciding with reproductive phase of the crop.

Keywords: climate, irrigation, mitigation, wheat

Procedia PDF Downloads 99