Search results for: surface energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13491

Search results for: surface energy

201 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites

Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga

Abstract:

Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.

Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing

Procedia PDF Downloads 87
200 Prevention of Preterm Birth and Management of Uterine Contractions with Traditional Korean Medicine: Integrative Approach

Authors: Eun-Seop Kim, Eun-Ha Jang, Rana R. Kim, Sae-Byul Jang

Abstract:

Objective: Preterm labor is the most common antecedent of preterm birth(PTB), which is characterized by regular uterine contraction before 37 weeks of pregnancy and cervical change. In acute preterm labor, tocolytics are administered as the first-line medication to suppress uterine contractions but rarely delay pregnancy to 37 weeks of gestation. On the other hand, according to the Korean Traditional Medicine, PTB is caused by the deficiency of Qi and unnecessary energy in the body of the mother. The aim of this study was to demonstrate the benefit of Traditional Korean Medicine as an adjuvant therapy in management of early uterine contractions and the prevention of PTB. Methods: It is a case report of a 38-year-old woman (0-0-6-0) hospitalized for irregular uterine contractions and cervical change at 33+3/7 weeks of gestation. Past history includes chemical pregnancies achieved by Artificial Rroductive Technology(ART), one stillbirth (at 7 weeks) and a laparoscopic surgery for endometriosis. After seven trials of IVF and articificial insemination, she had succeeded in conception via in-vitro fertilization (IVF) with help of Traditional Korean Medicine (TKM) treatments. Due to irregular uterine contractions and cervical changes, 2 TKM were prescribed: Gami-Dangguisan, and Antae-eum, known to nourish blood and clear away heat. 120ml of Gami-Dangguisan was given twice a day monring and evening along with same amount of Antae-eum once a day from 31 August 2013 to 28 November 2013. Tocolytics (Ritodrine) was administered as a first aid for maintenance of pregnancy. Information regarding progress until the delivery was collected during the patient’s visit. Results: On admission, the cervix of 15mm in length and cervical os with 0.5cm-dilated were observed via ultrasonography. 50% cervical effacement was also detected in physical examination. Tocolysis had been temporarily maintained. As a supportive therapy, TKM herbal preparations(gami-dangguisan and Antae-eum) were concomitantly given. As of 34+2/7 weeks of gestation, however intermittent uterine contractions appeared (5-12min) on cardiotocography and vaginal bleeding was also smeared at 34+3/7 weeks. However, enhanced tocolytics and continuous administration of herbal medicine sustained the pregnancy to term. At 37+2/7 weeks, no sign of labor with restored cervical length was confirmed. The woman gave a term birth to a healthy infant via vaginal delivery at 39+3/7 gestational weeks. Conclusions: This is the first successful case report about a preter labor patient administered with conventional tocolytic agents as well as TKM herbal decoctions, delaying delivery to term. This case deserves attention considering it is rare to maintain gestation to term only with tocolytic intervention. Our report implies the potential of herbal medicine as an adjuvant therapy for preterm labor treatment. Further studies are needed to assess the safety and efficacy of TKM herbal medicine as a therapeutic alternative for curing preterm birth.

Keywords: preterm labor, traditional Korean medicine, herbal medicine, integrative treatment, complementary and alternative medicine

Procedia PDF Downloads 348
199 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 273
198 Steel Concrete Composite Bridge: Modelling Approach and Analysis

Authors: Kaviyarasan D., Satish Kumar S. R.

Abstract:

India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.

Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge

Procedia PDF Downloads 166
197 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: photoinduced tautomerization reactions, gas phse spectroscopy, ), IR-UV double resonance spectroscopy, resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)

Procedia PDF Downloads 57
196 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 318
195 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 108
194 Extracellular Polymeric Substances Study in an MBR System for Fouling Control

Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas

Abstract:

Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.

Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS

Procedia PDF Downloads 243
193 Corporate In-Kind Donations and Economic Efficiency: The Case of Surplus Food Recovery and Donation

Authors: Sedef Sert, Paola Garrone, Marco Melacini, Alessandro Perego

Abstract:

This paper is aimed at enhancing our current understanding of motivations behind corporate in-kind donations and to find out whether economic efficiency may be a major driver. Our empirical setting is consisted of surplus food recovery and donation by companies from food supply chain. This choice of empirical setting is motivated by growing attention on the paradox of food insecurity and food waste i.e. a total of 842 million people worldwide were estimated to be suffering from regularly not getting enough food, while approximately 1.3 billion tons per year food is wasted globally. Recently, many authors have started considering surplus food donation to nonprofit organizations as a way to cope with social issue of food insecurity and environmental issue of food waste. In corporate philanthropy literature the motivations behind the corporate donations for social purposes, such as altruistic motivations, enhancements to employee morale, the organization’s image, supplier/customer relationships, local community support, have been examined. However, the relationship with economic efficiency is not studied and in many cases the pure economic efficiency as a decision making factor is neglected. Although in literature there are some studies give us the clue on economic value creation of surplus food donation such as saving landfill fees or getting tax deductions, so far there is no study focusing deeply on this phenomenon. In this paper, we develop a conceptual framework which explores the economic barriers and drivers towards alternative surplus food management options i.e. discounts, secondary markets, feeding animals, composting, energy recovery, disposal. The case study methodology is used to conduct the research. Protocols for semi structured interviews are prepared based on an extensive literature review and adapted after expert opinions. The interviews are conducted mostly with the supply chain and logistics managers of 20 companies in food sector operating in Italy, in particular in Lombardy region. The results shows that in current situation, the food manufacturing companies can experience cost saving by recovering and donating the surplus food with respect to other methods especially considering the disposal option. On the other hand, retail and food service sectors are not economically incentivized to recover and donate surplus food to disfavored population. The paper shows that not only strategic and moral motivations, but also economic motivations play an important role in managerial decision making process in surplus food management. We also believe that our research while rooted in the surplus food management topic delivers some interesting implications to more general research on corporate in-kind donations. It also shows that there is a huge room for policy making favoring the recovery and donation of surplus products.

Keywords: corporate philanthropy, donation, recovery, surplus food

Procedia PDF Downloads 285
192 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process

Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng

Abstract:

Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.

Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency

Procedia PDF Downloads 21
191 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities

Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort

Abstract:

Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.

Keywords: environmental radioactivity, Euratom, monitoring report, REMdb

Procedia PDF Downloads 408
190 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study

Authors: Tapan Kumar Dhar

Abstract:

How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.

Keywords: climate change adaptation, resilience, sea-level rise, urban form

Procedia PDF Downloads 344
189 Dietary Diversity of Pregnant Mothers in a Semi-Urban Setting: Sri Lanka

Authors: R. B. B. Samantha Ramachandra, L. D. J. Upul Senarath, S. H. Padmal De Silva

Abstract:

Dietary pattern largely differs over countries and even within a country, it shows cultural differences. The dietary pattern changes the energy consumption and micronutrient intake, directly affects the pregnancy outcome. The dietary diversity was used as an indirect measure to assess micronutrient adequacy for pregnant mothers in this study. The study was conducted as a baseline survey with the objective of designing an intervention to improve the dietary diversity of pregnant mothers in Sri Lanka. The survey was conducted in Kalutara district of Sri Lanka in 2015 among 769 pregnant mothers at different gestational ages. Dietary diversity questionnaire developed by Food and Agricultural Organization’s (FAO) Food and Nutrition technical Assistance (FANTA) II project, recommended for cross-country use with adaptations was used for data collection. Trained data collectors met pregnant mothers at field ante-natal clinic and questioned on last 24hr dietary recall with portion size and coded food items to identify the diversity. Pregnant mothers were identified from randomly selected 21 clusters of public health midwife areas. 81.5% mothers (n=627) in the sample had been registered at Public Health Midwife (PHM) before 8 weeks of gestation. 24.4% of mothers were with low starting BMI and 22.7% mothers were with high starting BMI. 47.6% (n=388) mothers had abstained from at least one food item during the pregnancy. The food group with the highest consumption was rice (98.4%) followed by sugar (89.9%). 76.1% mothers had consumed milk, 73% consumed fish and sea foods. Consumption of green leaves was 52% and Vit A rich foods consumed only by 49% mothers. Animal organs, flesh meat and egg all showed low prevalence as 4.7%, 21.6% and 20% respectively. Consumption of locally grown roots, nut, legumes all showed very low prevalence. Consumption of 6 or more food groups was considered as good dietary diversity (DD), 4 to 5 food groups as moderate diversity and 3 or less food groups as poor diversity by FAO FANTA II project. 42.1% mothers demonstrated good DD while another 42.1% recorded moderate diversity. Working mothers showed better DD (51.6%, n=82/159) compared to housewives in the sample (chi = 10.656a,. df=2, p=0.005). The good DD showed gradual improvement from 43.1% to 55.5% along the poorest to richest wealth index (Chi=48.045, df=8 and p=0.000). DD showed significant association with the ethnicity and Moors showed the lowest DD. DD showed no association with the home gardening even though where better diversity expected among those who have home gardening (p=0.548). Sri Lanka is a country where many food items can be grown in the garden and semi-urban setting have adequate space for gardening. Many Sri Lankan mothers do not add homegrown items in their meal. At the same time, their consumption of animal food shows low prevalence. The DD of most of the mothers being either moderate or low (58%) may result from inadequate micro nutrient intake during pregnancy. It is recommended that adding green leaves, locally grown vegetables, roots, nuts and legumes can help increasing the DD of Sri Lankan mothers at low cost.

Keywords: dietary diversity, pregnant mothers, micro-nutrient, food groups

Procedia PDF Downloads 148
188 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses

Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis

Abstract:

Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.

Keywords: arginine, progesterone, rabbits, reproduction

Procedia PDF Downloads 66
187 Treatment with Triton-X 100: An Enhancement Approach for Cardboard Bioprocessing

Authors: Ahlam Said Al Azkawi, Nallusamy Sivakumar, Saif Nasser Al Bahri

Abstract:

Diverse approaches and pathways are under development with the determination to develop cellulosic biofuels and other bio-products eventually at commercial scale in “bio-refineries”; however, the key challenge is mainly the high level of complexity in processing the feedstock which is complicated and energy consuming. To overcome the complications in utilizing the naturally occurring lignocellulose biomass, using waste paper as a feedstock for bio-production may solve the problem. Besides being abundant and cheap, bioprocessing of waste paper has evolved in response to the public concern from rising landfill cost from shrinking landfill capacity. Cardboard (CB) is one of the major components of municipal solid waste and one of the most important items to recycle. Although 50-70% of cardboard constitute is known to be cellulose and hemicellulose, the presence of lignin around them cause hydrophobic cross-link which physically obstructs the hydrolysis by rendering it resistant to enzymatic cleavage. Therefore, pretreatment is required to disrupt this resistance and to enhance the exposure of the targeted carbohydrates to the hydrolytic enzymes. Several pretreatment approaches have been explored, and the best ones would be those can influence cellulose conversion rates and hydrolytic enzyme performance with minimal or less cost and downstream processes. One of the promising strategies in this field is the application of surfactants, especially non-ionic surfactants. In this study, triton-X 100 was used as surfactants to treat cardboard prior enzymatic hydrolysis and compare it with acid treatment using 0.1% H2SO4. The effect of the surfactant enhancement was evaluated through its effect on hydrolysis rate in respect to time in addition to evaluating the structural changes and modification by scanning electron microscope (SEM) and X-ray diffraction (XRD) and through compositional analysis. Further work was performed to produce ethanol from CB treated with triton-X 100 via separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The hydrolysis studies have demonstrated enhancement in saccharification by 35%. After 72 h of hydrolysis, a saccharification rate of 98% was achieved from CB enhanced with triton-X 100, while only 89 of saccharification achieved from acid pre-treated CB. At 120 h, the saccharification % exceeded 100 as reducing sugars continued to increase with time. This enhancement was not supported by any significant changes in the cardboard content as the cellulose, hemicellulose and lignin content remained same after treatment, but obvious structural changes were observed through SEM images. The cellulose fibers were clearly exposed with very less debris and deposits compared to cardboard without triton-X 100. The XRD pattern has also revealed the ability of the surfactant in removing calcium carbonate, a filler found in waste paper known to have negative effect on enzymatic hydrolysis. The cellulose crystallinity without surfactant was 73.18% and reduced to 66.68% rendering it more amorphous and susceptible to enzymatic attack. Triton-X 100 has proved to effectively enhance CB hydrolysis and eventually had positive effect on the ethanol yield via SSF. Treating cardboard with only triton-X 100 was a sufficient treatment to enhance the enzymatic hydrolysis and ethanol production.

Keywords: cardboard, enhancement, ethanol, hydrolysis, treatment, Triton-X 100

Procedia PDF Downloads 131
186 Monitoring of Vector Mosquitors of Diseases in Areas of Energy Employment Influence in the Amazon (Amapa State), Brazil

Authors: Ribeiro Tiago Magalhães

Abstract:

Objective: The objective of this study was to evaluate the influence of a hydroelectric power plant in the state of Amapá, and to present the results obtained by dimensioning the diversity of the main mosquito vectors involved in the transmission of pathogens that cause diseases such as malaria, dengue and leishmaniasis. Methodology: The present study was conducted on the banks of the Araguari River, in the municipalities of Porto Grande and Ferreira Gomes in the southern region of Amapá State. Nine monitoring campaigns were conducted, the first in April 2014 and the last in March 2016. The selection of the catch sites was done in order to prioritize areas with possible occurrence of the species considered of greater importance for public health and areas of contact between the wild environment and humans. Sampling efforts aimed to identify the local vector fauna and to relate it to the transmission of diseases. In this way, three phases of collection were established, covering the schedules of greater hematophageal activity. Sampling was carried out using Shannon Shack and CDC types of light traps and by means of specimen collection with the hold method. This procedure was carried out during the morning (between 08:00 and 11:00), afternoon-twilight (between 15:30 and 18:30) and night (between 18:30 and 22:00). In the specific methodology of capture with the use of the CDC equipment, the delimited times were from 18:00 until 06:00 the following day. Results: A total of 32 species of mosquitoes was identified, and a total of 2,962 specimens was taxonomically subdivided into three genera (Culicidae, Psychodidae and Simuliidae) Psorophora, Sabethes, Simulium, Uranotaenia and Wyeomyia), besides those represented by the family Psychodidae that due to the morphological complexities, allows the safe identification (without the method of diaphanization and assembly of slides for microscopy), only at the taxonomic level of subfamily (Phlebotominae). Conclusion: The nine monitoring campaigns carried out provided the basis for the design of the possible epidemiological structure in the areas of influence of the Cachoeira Caldeirão HPP, in order to point out among the points established for sampling, which would represent greater possibilities, according to the group of identified mosquitoes, of disease acquisition. However, what should be mainly considered, are the future events arising from reservoir filling. This argument is based on the fact that the reproductive success of Culicidae is intrinsically related to the aquatic environment for the development of its larvae until adulthood. From the moment that the water mirror is expanded in new environments for the formation of the reservoir, a modification in the process of development and hatching of the eggs deposited in the substrate can occur, causing a sudden explosion in the abundance of some genera, in special Anopheles, which holds preferences for denser forest environments, close to the water portions.

Keywords: Amazon, hydroelectric, power, plants

Procedia PDF Downloads 167
185 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 32
184 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 140
183 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: building optimization, green building, post occupancy evaluation, stakeholder engagement

Procedia PDF Downloads 335
182 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 255
181 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 266
180 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate

Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez

Abstract:

Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.

Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements

Procedia PDF Downloads 107
179 A Study on Green Building Certification Systems within the Context of Anticipatory Systems

Authors: Taner Izzet Acarer, Ece Ceylan Baba

Abstract:

This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.

Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED

Procedia PDF Downloads 204
178 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases

Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner

Abstract:

Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.

Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations

Procedia PDF Downloads 100
177 Oil-price Volatility and Economic Prosperity in Nigeria: Empirical Evidence

Authors: Yohanna Panshak

Abstract:

The impact of macroeconomic instability on economic growth and prosperity has been at forefront in many discourses among researchers and policy makers and has generated a lot of controversies over the years. This has generated series of research efforts towards understanding the remote causes of this phenomenon; its nature, determinants and how it can be targeted and mitigated. While others have opined that the root cause of macroeconomic flux in Nigeria is attributed to Oil-Price volatility, others viewed the issue as resulting from some constellation of structural constraints both within and outside the shores of the country. Research works of scholars such as [Akpan (2009), Aliyu (2009), Olomola (2006), etc] argue that oil volatility can determine economic growth or has the potential of doing so. On the contrary, [Darby (1982), Cerralo (2005) etc] share the opinion that it can slow down growth. The earlier argument rest on the understanding that for a net balance of oil exporting economies, price upbeat directly increases real national income through higher export earnings, whereas, the latter allude to the case of net-oil importing countries (which experience price rises, increased input costs, reduced non-oil demand, low investment, fall in tax revenues and ultimately an increase in budget deficit which will further reduce welfare level). Therefore, assessing the precise impact of oil price volatility on virtually any economy is a function of whether it is an oil-exporting or importing nation. Research on oil price volatility and its outcome on the growth of the Nigerian economy are evolving and in a march towards resolving Nigeria’s macroeconomic instability as long as oil revenue still remain the mainstay and driver of socio-economic engineering. Recently, a major importer of Nigeria’s oil- United States made a historic breakthrough in more efficient source of energy for her economy with the capacity of serving significant part of the world. This undoubtedly suggests a threat to the exchange earnings of the country. The need to understand fluctuation in its major export commodity is critical. This paper leans on the Renaissance growth theory with greater focus on theoretical work of Lee (1998); a leading proponent of this school who makes a clear cut of difference between oil price changes and oil price volatility. Based on the above background, the research seeks to empirically examine the impact oil-price volatility on government expenditure using quarterly time series data spanning 1986:1 to 2014:4. Vector Auto Regression (VAR) econometric approach shall be used. The structural properties of the model shall be tested using Augmented Dickey-Fuller and Phillips-Perron. Relevant diagnostics tests of heteroscedasticity, serial correlation and normality shall also be carried out. Policy recommendation shall be offered on the empirical findings and believes it assist policy makers not only in Nigeria but the world-over.

Keywords: oil-price, volatility, prosperity, budget, expenditure

Procedia PDF Downloads 251
176 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 107
175 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 70
174 Achieving Sustainable Development through Transformative Pedagogies in Universities

Authors: Eugene Allevato

Abstract:

Developing a responsible personal worldview is central to sustainable development, but achieving quality education to promote transformative learning for sustainability is thus far, poorly understood. Most programs involving education for sustainable development rely on changing behavior, rather than attitudes. The emphasis is on the scientific and utilitarian aspect of sustainability with negligible importance on the intrinsic value of nature. Campus sustainability projects include building sustainable gardens and implementing energy-efficient upgrades, instead of focusing on educating for sustainable development through exploration of students’ values and beliefs. Even though green technology adoption maybe the right thing to do, most schools are not targeting the root cause of the environmental crisis; they are just providing palliative measures. This study explores the under-examined factors that lead to pro-environmental behavior by investigating the environmental perceptions of both college business students and personnel of green organizations. A mixed research approach of qualitative, based on structured interviews, and quantitative instruments was developed including 30 college-level students’ interviews and 40 green organization staff members involved in sustainable activities. The interviews were tape-recorded and transcribed for analysis. Categorization of the responses to the open‐ended questions was conducted with the purpose of identifying the main types of factors influencing attitudes and correlating with behaviors. Overall the findings of this study indicated a lack of appreciation for nature, and inability to understand interconnectedness and apply critical thinking. The results of the survey conducted on undergraduate students indicated that the responses of business and liberal arts students by independent t-test were significantly different, with a p‐value of 0.03. While liberal arts students showed an understanding of human interdependence with nature and its delicate balance, business students seemed to believe that humans were meant to rule over the rest of nature. This result was quite intriguing from the perspective that business students will be defining markets, influencing society, controlling and managing businesses that supposedly, in the face of climate change, shall implement sustainable activities. These alarming results led to the focus on green businesses in order to better understand their motivation to engage in sustainable activities. Additionally, a probit model revealed that childhood exposure to nature has a significantly positive impact in pro-environmental attitudes to most of the New Ecological Paradigm scales. Based on these findings, this paper discusses educators including Socrates, John Dewey and Paulo Freire in the implementation of eco-pedagogy and transformative learning following a curriculum with emphasis on critical and systems thinking, which are deemed to be key ingredients in quality education for sustainable development.

Keywords: eco-pedagogy, environmental behavior, quality education for sustainable development, transformative learning

Procedia PDF Downloads 295
173 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile

Authors: Pablo Reche

Abstract:

Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.

Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis

Procedia PDF Downloads 138
172 Examination of Indoor Air Quality of Naturally Ventilated Dwellings During Winters in Mega-City Kolkata

Authors: Tanya Kaur Bedi, Shankha Pratim Bhattacharya

Abstract:

The US Environmental Protection Agency defines indoor air quality as “The air quality within and around buildings, especially as it relates to the health and comfort of building occupants”. According to the 2021 report by the Energy Policy Institute at Chicago, Indian residents, a country which is home to the highest levels of air pollution in the world, lose about 5.9 years from life expectancy due to poor air quality and yet has numerous dwellings dependent on natural ventilation. Currently the urban population spends 90% of the time indoors, this scenario raises a concern for occupant health and well-being. The built environment can affect health directly and indirectly through immediate or long-term exposure to indoor air pollutants. Health effects associated with indoor air pollutants include eye/nose/throat irritation, respiratory diseases, heart disease, and even cancer. This study attempts to demonstrate the causal relationship between the indoor air quality and its determining aspects. Detailed indoor air quality audits were conducted in residential buildings located in Kolkata, India in the months of December and January 2021. According to the air pollution knowledge assessment city program in India, Kolkata is also the second most polluted mega-city after Delhi. Although the air pollution levels are alarming year-long, the winter months are most crucial due to the unfavorable environmental conditions. While emissions remain typically constant throughout the year, cold air is denser and moves slower than warm air, trapping the pollution in place for much longer and consequently is breathed in at a higher rate than the summers. The air pollution monitoring period was selected considering environmental factors and major pollution contributors like traffic and road dust. This study focuses on the relationship between the built environment and the spatial-temporal distribution of air pollutants in and around it. The measured parameters include, temperature, relative humidity, air velocity, particulate matter, volatile organic compounds, formaldehyde, and benzene. A total of 56 rooms were audited, selectively targeting the most dominant middle-income group. The data-collection was conducted using a set of instruments positioned in the human breathing-zone. The study assesses indoor air quality based on factors determining natural ventilation and air pollution dispersion such as surrounding environment, dominant wind, openable window to floor area ratio, windward or leeward side openings, and natural ventilation type in the room: single side or cross-ventilation, floor height, residents cleaning habits, etc.

Keywords: indoor air quality, occupant health, urban housing, air pollution, natural ventilation, architecture, urban issues

Procedia PDF Downloads 101