Search results for: biological systems engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13795

Search results for: biological systems engineering

535 Silica Nanofibres – Promising Material for Regenerative Medicine

Authors: Miroslava Rysová, Zdena Syrová, Tomáš Zajíc, Petr Exnar

Abstract:

Currently, attention of tissue engineers has been attracted to novel nanofibrous materials having advanced properties and ability to mimic extracellular matrix (ECM) by structure which makes them interesting candidates for application in regenerative medicine as scaffolding and/or drug delivering material. Throughout the last decade, more than 200 synthetic and natural polymers have been successfully electrospun leading to the formation of nanofibres with a wide range of chemical, mechanical and degradation properties. In this family, inorganic nanofibres represent very specific group offering an opportunity to manufacture inert to body, well degradable and in properties tunable material. Aim of this work, was to reveal unique properties of silica (SiO2, CAS 7631-86-9) nanofibres and their potential in field of regenerative medicine. Silica nanofibres were prepared by sol-gel method from tetraethyl orthosilicate (TEOS, CAS 78-10-4) as a precursor and subsequently manufactured by needleless electrospinning on NanospiderTM device. Silica nanofibres thermally stabilized under 200°C were confirmed to be fully biodegradable and soluble in several simulated body fluids. In vitro cytotoxicity tests of eluate (ES ISO 10993-5:1999) and in direct contact (ES ISO 10993-5:2009) showed no toxicity - e.g. cell viabilities reached values exceeding 80%. Those results were obtained equally from two different cell lines (Vero, 3T3). Non-toxicity of silaca nanofibres´ eluate was additionally confirmed in real time by testing on xCelligence (ACEA Biosciences, Inc.) device. Both cell types also showed good adhesion to material. To conclude, all mentioned results lead to resumption that silica nanofibres have a potential as material for regenerative medicine which opens door to further research.

Keywords: cytotoxicity, electrospinning, nanofibres, silica, tissue engineering

Procedia PDF Downloads 433
534 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 41
533 Security Report Profiling for Mobile Banking Applications in Indonesia Based on OWASP Mobile Top 10-2016

Authors: Bambang Novianto, Rizal Aditya Herdianto, Raphael Bianco Huwae, Afifah, Alfonso Brolin Sihite, Rudi Lumanto

Abstract:

The mobile banking application is a type of mobile application that is growing rapidly. This is caused by the ease of service and time savings in making transactions. On the other hand, this certainly provides a challenge in security issues. The use of mobile banking can not be separated from cyberattacks that may occur which can result the theft of sensitive information or financial loss. The financial loss and the theft of sensitive information is the most avoided thing because besides harming the user, it can also cause a loss of customer trust in a bank. Cyberattacks that are often carried out against mobile applications are phishing, hacking, theft, misuse of data, etc. Cyberattack can occur when a vulnerability is successfully exploited. OWASP mobile Top 10 has recorded as many as 10 vulnerabilities that are most commonly found in mobile applications. In the others, android permissions also have the potential to cause vulnerabilities. Therefore, an overview of the profile of the mobile banking application becomes an urgency that needs to be known. So that it is expected to be a consideration of the parties involved for improving security. In this study, an experiment has been conducted to capture the profile of the mobile banking applications in Indonesia based on android permission and OWASP mobile top 10 2016. The results show that there are six basic vulnerabilities based on OWASP Mobile Top 10 that are most commonly found in mobile banking applications in Indonesia, i.e. M1:Improper Platform Usage, M2:Insecure Data Storage, M3:Insecure Communication, M5:Insufficient Cryptography, M7:Client Code Quality, and M9:Reverse Engineering. The most permitted android permissions are the internet, status network access, and telephone read status.

Keywords: mobile banking application, OWASP mobile top 10 2016, android permission, sensitive information, financial loss

Procedia PDF Downloads 145
532 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 238
531 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture

Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz

Abstract:

The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.

Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering

Procedia PDF Downloads 316
530 Regulation Aspects for a Radioisotope Production Installation in Brazil

Authors: Rian O. Miranda, Lidia V. de Sa, Julio C. Suita

Abstract:

The Brazilian Nuclear Energy Commission (CNEN) is the main manufacturer of radiopharmaceuticals in Brazil. The Nuclear Engineering Institute (IEN), located at Rio de Janeiro, is one of its main centers of research and production, attending public and private hospitals in the state. This radiopharmaceutical production is used in diagnostic and therapy procedures and allows one and a half million nuclear medicine procedures annually. Despite this, the country is not self-sufficient to meet national demand, creating the need for importation and consequent dependence on other countries. However, IEN facilities were designed in the 60's, and today its structure is inadequate in relation to the good manufacturing practices established by sanitary regulator (ANVISA) and radiological protection leading to the need for a new project. In order to adapt and increase production in the country, a new plant will be built and integrated to the existing facilities with a new 30 MeV Cyclotron that is actually in project detailing process. Thus, it is proposed to survey current CNEN and ANVISA standards for radiopharmaceutical production facilities, as well as the radiological protection analysis of each area of the plant, following good manufacturing practices recommendations adopted nationally besides licensing exigencies for radioactive facilities. In this way, the main requirements for proper operation, equipment location, building materials, area classification, and maintenance program have been implemented. The access controls, interlocks, segregation zones and pass-through boxes integrated into the project were also analyzed. As a result, IEN will in future have the flexibility to produce all necessary radioisotopes for nuclear medicine application, more efficiently by simultaneously bombarding two targets, allowing the simultaneous production of two different radioisotopes, minimizing radiation exposure and saving operating costs.

Keywords: cyclotron, legislation, norms, production, radiopharmaceuticals

Procedia PDF Downloads 138
529 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 176
528 Study of a Cross-Flow Membrane to a Kidney Encapsulation Engineering Structures for Immunosuppression Filter

Authors: Sihyun Chae, Ryoto Arai, Waldo Concepcion, Paula Popescu

Abstract:

The kidneys perform an important role in the human hormones that regulate the blood pressure, produce an active form of vitamin D and control the production of red blood cells. Kidney disease can cause health problems, such as heart disease. Also, increase the chance of having a stroke or heart attack. There are mainly to types of treatments for kidney disease, dialysis, and kidney transplant. For a better quality of life, the kidney transplant is desirable. However, kidney transplant can cause antibody reaction and patients’ body would be attacked by immune system of their own. For solving that issue, patients with transplanted kidney always take immunosuppressive drugs which can hurt kidney as side effects. Patients willing to do a kidney transplant have a waiting time of 3.6 years in average searching to find an appropriate kidney, considering there are almost 96,380 patients waiting for kidney transplant. There is a promising method to solve these issues: bioartificial kidney. Our membrane is specially designed with unique perforations capable to filter the blood cells separating the white blood cells from red blood cells. White blood cells will not pass through the encapsulated kidney preventing the immune system to attack the new organ and eliminating the need of a matching donor. It is possible to construct life-time long encapsulation without needing pumps or a power supply on the cell’s separation method preventing futures surgeries due the Cross-Channel Flow inside the device. This technology allows the possibility to use an animal kidney, prevent cancer cells to spread through the body, arm and leg transplants in the future. This project aims to improve the quality of life of patients with kidney disease.

Keywords: kidney encapsulation, immunosuppression filter, leukocyte filter, leukocyte

Procedia PDF Downloads 203
527 Analysis of the Learning Effectiveness of the Steam-6e Course: A Case Study on the Development of Virtual Idol Product Design as an Example

Authors: Mei-Chun. Chang

Abstract:

STEAM (Science, Technology, Engineering, Art, and Mathematics) represents a cross-disciplinary and learner-centered teaching model that cultivates students to link theory with the presentation of real situations, thereby improving their various abilities. This study explores students' learning performance after using the 6E model in STEAM teaching for a professional course in the digital media design department of technical colleges, as well as the difficulties and countermeasures faced by STEAM curriculum design and its implementation. In this study, through industry experts’ work experience, activity exchanges, course teaching, and experience, learners can think about the design and development value of virtual idol products that meet the needs of users and to employ AR/VR technology to innovate their product applications. Applying action research, the investigation has 35 junior students from the department of digital media design of the school where the researcher teaches as the research subjects. The teaching research was conducted over two stages spanning ten weeks and 30 sessions. This research collected the data and conducted quantitative and qualitative data sorting analyses through ‘design draft sheet’, ‘student interview record’, ‘STEAM Product Semantic Scale’, and ‘Creative Product Semantic Scale (CPSS)’. Research conclusions are presented, and relevant suggestions are proposed as a reference for teachers or follow-up researchers. The contribution of this study is to teach college students to develop original virtual idols and product designs, improve learning effectiveness through STEAM teaching activities, and effectively cultivate innovative and practical cross-disciplinary design talents.

Keywords: STEAM, 6E model, virtual idol, learning effectiveness, practical courses

Procedia PDF Downloads 129
526 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 422
525 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump

Authors: Samuel Asrat

Abstract:

Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice.

Keywords: dip, ip, sp, is

Procedia PDF Downloads 78
524 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 82
523 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 52
522 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 109
521 Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design

Authors: Mohd Ritzman Abdul Karim, Zhaohui Huang

Abstract:

A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations.

Keywords: damage-control target displacement, damage limit states, reinforced concrete bridge pier, yield displacement

Procedia PDF Downloads 158
520 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 657
519 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 163
518 Homosexuality and Culture: A Case Study Depicting the Struggles of a Married Lady

Authors: Athulya Jayakumar, M. Manjula

Abstract:

Though there has been a shift in the understanding of homosexuality from being a sin, crime or pathology in the medical and legal perspectives, the acceptance of homosexuality still remains very scanty in the Indian subcontinent. The present case study is a 24-year-old female who has completed a diploma in polytechnic engineering and residing in the state of Kerala. She initially presented with her husband with complaints of lack of sexual desire and non-cooperation from the index client. After an initial few sessions, the client revealed, in an individual session, about her homosexual orientation which was unknown to her family. She has had multiple short-term relations with females and never had any heterosexual orientation/interest. During her adolescence, she was wondering if she could change herself into a male. However, currently, she accepts her gender. She never wanted a heterosexual marriage; but, had to succumb to the pressure of mother, as a result of a series of unexpected incidents at home and had to agree for the marriage, also with a hope that she may change herself into a bi-sexual. The client was able to bond with the husband emotionally but the multiple attempts at sexual intercourse, at the insistence of the husband, had always been non-pleasurable and induced a sense of disgust. Currently, for several months, there has not been any sexual activity. Also, she actively avoids any chance to have a warm communication with him so that she can avoid chances of him approaching her in a sexual manner. The case study is an attempt to highlight the culture and the struggles of a homosexual individual who comes to therapy for wanting to be a ‘normal wife’ despite having knowledge of legal rights and scenario. There is a scarcity of Indian literature that has systematically investigated issues related to homosexuality. Data on prevalence, emotional problems faced and clinical services available are sparse though it is crucial for increasing understanding of sexual behaviour, orientation and difficulties faced in India.

Keywords: case study, culture, cognitive behavior therapy, female homosexuality

Procedia PDF Downloads 348
517 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold

Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang

Abstract:

PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).

Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting

Procedia PDF Downloads 279
516 Assessment of Vehicular Accidents and Possible Mitigation Measures: A Case of Ahmedabad, Gujarat, India

Authors: K. Omkar, D. Nayan

Abstract:

Rapid urbanization is one of the consequences of rapid population explosion, which has also led to massive increase in number of motorized vehicles essential for carrying out all activities needed for sustaining urban livelihood. With this increased use of motorized vehicles over the time there has also been an increase in number of accidents. Study of road network and geometric features are essential to tackle problems of road accidents in any district or town. The increase in road accidents is one of the burning issues in the present society. Records show that there is one death at every 3.7 minutes because of road accident. It has been found from the research that, accidents occur due to, mistakes of the driver (86%) followed by bad street condition (5%), mistake of pedestrian (4%), as well as technical and maintenance defects (1%). Here, case study of Ahmedabad, Gujarat is taken up where first road safety level is assessed considering various parameters. The study confined to accident characteristics of all types of vehicles. For deeper analysis, road safety index for various stretches in Ahmedabad was found out. Crash rate for same stretches was found out. Based on various parameters priority was decided so that which stretch should be look out first to minimize road accidents on that stretch and which stretch should look out last. The major findings of the study are that accident severity of Ahmedabad has increased, but accident fatality risk has decreased; thus there is need to undertake some traffic engineering measures or make some traffic rules that are strictly followed by traffic. From the above study and literature studied it is found that Ahmedabad is suffering from similar problem of accidents and injuries and deaths caused by them, after properly investigating the issue short-term and long-term solutions to minimize road accidents have been presented in this paper.

Keywords: accident severity index, accident fatality rate, accident fatality risk, accident risk, road safety index

Procedia PDF Downloads 145
515 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 221
514 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 284
513 Strain-Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films

Authors: Zhibo Zhao, Horst Hahn, Robert Kruk, Abhisheck Sarkar

Abstract:

High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.

Keywords: high entropy oxides, thin film, strain tuning, perpendicular magnetic anistropy

Procedia PDF Downloads 51
512 A Gamification Teaching Method for Software Measurement Process

Authors: Lennon Furtado, Sandro Oliveira

Abstract:

The importance of an effective measurement program lies in the ability to control and predict what can be measured. Thus, the measurement program has the capacity to provide bases in decision-making to support the interests of an organization. Therefore, it is only possible to apply for an effective measurement program with a team of software engineers well trained in the measurement area. However, the literature indicates that are few computer science courses that have in their program the teaching of the software measurement process. And even these, generally present only basic theoretical concepts of said process and little or no measurement in practice, which results in the student's lack of motivation to learn the measurement process. In this context, according to some experts in software process improvements, one of the most used approaches to maintaining the motivation and commitment to software process improvements program is the use of the gamification. Therefore, this paper aims to present a proposal of teaching the measurement process by gamification. Which seeks to improve student motivation and performance in the assimilation of tasks related to software measurement, by incorporating elements of games into the practice of measurement process, making it more attractive for learning. And as a way of validating the proposal will be made a comparison between two distinct groups of 20 students of Software Quality class, a control group, and an experiment group. The control group will be the students that will not make use of the gamification proposal to learn software measurement process, while the experiment group, will be the students that will make use of the gamification proposal to learn software measurement process. Thus, this paper will analyze the objective and subjective results of each group. And as objective result will be analyzed the student grade reached at the end of the course, and as subjective results will be analyzed a post-course questionnaire with the opinion of each student about the teaching method. Finally, this paper aims to prove or refute the following hypothesis: If the gamification proposal to teach software measurement process does appropriate motivate the student, in order to attribute the necessary competence to the practical application of the measurement process.

Keywords: education, gamification, software measurement process, software engineering

Procedia PDF Downloads 321
511 Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment

Authors: Jisong Ryu, Woosik Lee, Yonggu Jang

Abstract:

The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea.

Keywords: Korea-style GPR testbed, GPR, metal pipe detecting, non-metal pipe detecting

Procedia PDF Downloads 105
510 Maintaining Experimental Consistency in Geomechanical Studies of Methane Hydrate Bearing Soils

Authors: Lior Rake, Shmulik Pinkert

Abstract:

Methane hydrate has been found in significant quantities in soils offshore within continental margins and in permafrost within arctic regions where low temperature and high pressure are present. The mechanical parameters for geotechnical engineering are commonly evaluated in geomechanical laboratories adapted to simulate the environmental conditions of methane hydrate-bearing sediments (MHBS). Due to the complexity and high cost of natural MHBS sampling, most laboratory investigations are conducted on artificially formed samples. MHBS artificial samples can be formed using different hydrate formation methods in the laboratory, where methane gas and water are supplied into the soil pore space under the methane hydrate phase conditions. The most commonly used formation method is the excess gas method which is considered a relatively simple, time-saving, and repeatable testing method. However, there are several differences in the procedures and techniques used to produce the hydrate using the excess gas method. As a result of the difference between the test facilities and the experimental approaches that were carried out in previous studies, different measurement criteria and analyses were proposed for MHBS geomechanics. The lack of uniformity among the various experimental investigations may adversely impact the reliability of integrating different data sets for unified mechanical model development. In this work, we address some fundamental aspects relevant to reliable MHBS geomechanical investigations, such as hydrate homogeneity in the sample, the hydrate formation duration criterion, the hydrate-saturation evaluation method, and the effect of temperature measurement accuracy. Finally, a set of recommendations for repeatable and reliable MHBS formation will be suggested for future standardization of MHBS geomechanical investigation.

Keywords: experimental study, laboratory investigation, excess gas, hydrate formation, standardization, methane hydrate-bearing sediment

Procedia PDF Downloads 63
509 Design and Development of a Lead-Free BiFeO₃-BaTiO₃ Quenched Ceramics for High Piezoelectric Strain Performance

Authors: Muhammad Habib, Lin Tang, Guoliang Xue, Attaur Rahman, Myong-Ho Kim, Soonil Lee, Xuefan Zhou, Yan Zhang, Dou Zhang

Abstract:

Designing a high-performance, lead-free ceramic has become a cutting-edge research topic due to growing concerns about the toxic nature of lead-based materials. In this work, a convenient strategy of compositional design and domain engineering is applied to the lead-fee BiFeO₃-BaTiO₃ ceramics, which provides a flexible polarization-free-energy profile for domain switching. Here, simultaneously enhanced dynamic piezoelectric constant (d33* = 772 pm/V) and a good thermal-stability (d33* = 26% over the temperature of 20-180 ᵒC) are achieved with a high Curie temperature (TC) of 432 ᵒC. This high piezoelectric strain performance is collectively attributed to multiple effects such as thermal quenching, suppression of defect charges by donor doping, chemically induced local structure heterogeneity, and electric field-induced phase transition. Furthermore, the addition of BT content decreased octahedral tilting, reduced anisotropy for domain switching and increased tetragonality (cₜ/aₜ), providing a wider polar length for B-site cation displacement, leading to high piezoelectric strain performance. Atomic-resolution transmission electron microscopy and piezoelectric force microscopy combined with X-ray diffraction results strongly support the origin of high piezoelectricity. The high and temperature-stable piezoelectric strain response of this work is superior to those of other lead-free ceramics. The synergistic approach of composition design and the concept present here for the origin of high strain response provides a paradigm for the development of materials for high-temperature piezoelectric actuator applications.

Keywords: Piezoelectric, BiFeO3-BaTiO3, Quenching, Temperature-insensitive

Procedia PDF Downloads 90
508 Assistive Kitchenware Design for Hemiparetics

Authors: Daniel F. Madrinan-Chiquito

Abstract:

Hemiparesis affects about eight out of ten stroke survivors, causing weakness or the inability to move one side of the body. One-sided weakness can affect arms, hands, legs, or facial muscles. People with one-sided weakness may have trouble performing everyday activities such as eating, cooking, dressing, and using the bathroom. Rehabilitation treatments, exercises at home, and assistive devices can help with mobility and recovery. Historically, such treatments and devices were developed within the fields of medicine and biomedical engineering. However, innovators outside of the traditional medical device community, such as Industrial Designers, have recently brought their knowledge and expertise to assistive technologies. Primary and secondary research was done in three parts. The primary research collected data by talking with several occupational therapists currently attending to stroke patients, and surveys were given to patients with hemiparesis and hemiplegia. The secondary research collected data through observation and testing of products currently marketed for single-handed people. Modern kitchenware available in the market for people with an acquired brain injury has deficiencies in both aesthetic and functional values. Object design for people with hemiparesis or hemiplegia has not been meaningfully explored. Most cookware is designed for use with two hands and possesses little room for adaptation to the needs of one-handed individuals. This project focuses on the design and development of two kitchenware devices. These devices assist hemiparetics with different cooking-related tasks such as holding, grasping, cutting, slicing, chopping, grating, and other essential activities. These intentionally designed objects will improve the quality of life of hemiparetics by enabling greater independence and providing an enhanced ability for precision tasks in a cooking environment.

Keywords: assistive technologies, hemiparetics, industrial design, kitchenware

Procedia PDF Downloads 110
507 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations

Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman

Abstract:

Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.

Keywords: block, backward differentiation formulas, first order, fuzzy differential equations

Procedia PDF Downloads 322
506 Seismicity and Ground Response Analysis for MP Tourism Office in Indore, India

Authors: Deepshikha Shukla, C. H. Solanki, Mayank Desai

Abstract:

In the last few years, it has been observed that earthquake is proving a threat to the scientist across the world. With a large number of earthquakes occurring in day to day life, the threat to life and property has increased manifolds which call for an urgent attention of all the researchers globally to carry out the research in the field of Earthquake Engineering. Any hazard related to the earthquake and seismicity is considered to be seismic hazards. The common forms of seismic hazards are Ground Shaking, Structure Damage, Structural Hazards, Liquefaction, Landslides, Tsunami to name a few. Among all the natural hazards, the most devastating and damaging is the earthquake as all other hazards are triggered only after the occurrence of an earthquake. In order to quantify and estimate the seismicity and seismic hazards, many methods and approaches have been proposed in the past few years. Such approaches are Mathematical, Conventional and Computational. Convex Set Theory, Empirical Green’s Function are some of the Mathematical Approaches whereas the Deterministic and Probabilistic Approaches are the Conventional Approach for the estimation of the seismic Hazards. Ground response and Ground Shaking of a particular area or region plays an important role in the damage caused due to the earthquake. In this paper, seismic study using Deterministic Approach and 1 D Ground Response Analysis has been carried out for Madhya Pradesh Tourism Office in Indore Region in Madhya Pradesh in Central India. Indore lies in the seismic zone III (IS: 1893, 2002) in the Seismic Zoning map of India. There are various faults and lineament in this area and Narmada Some Fault and Gavilgadh fault are the active sources of earthquake in the study area. Deepsoil v6.1.7 has been used to perform the 1 D Linear Ground Response Analysis for the study area. The Peak Ground Acceleration (PGA) of the city ranges from 0.1g to 0.56g.

Keywords: seismicity, seismic hazards, deterministic, probabilistic methods, ground response analysis

Procedia PDF Downloads 170